Phase I/II Trial of Lenalidomide and High Dose Melphalan with Autologous Stem Cell Transplantation for Relapsed Myeloma

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3981-3981
Author(s):  
Nina Shah ◽  
Peter F. Thall ◽  
Patricia S Fox ◽  
Qaiser Bashir ◽  
Jatin J. Shah ◽  
...  

Abstract Introduction While high dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HCT) is an accepted part of up front therapy for patients with multiple myeloma (MM), the role of this treatment modality for relapsed patients is still evolving. In the era of modern therapeutics, it is reasonable to consider that the advantages gained for relapsed patients in the conventional setting may also extend to auto-HCT. We thus hypothesized that lenalidomide could be safely combined with high dose melphalan in the salvage auto-HCT setting and yield a meaningful duration of disease control. Methods We conducted a phase I/II study of lenalidomide and high dose melphalan + auto-HCT. MM patients with relapsed or progressive disease were treated with 7 days of oral lenalidomide (doses of 25, 50, 75 or 100 mg daily for the 7 days) on days (-8) to (-2). High dose melphalan (total of 200 mg/m2) was administered as 100 mg/m2 IV on days (-3) and (-2) followed by auto-HCT on day 0. The Eff-Tox method of Thall, Cook, and Estey was used for dose escalation with cohorts of 3 to maximize the trade-off between efficacy and toxicity, defined as CR at day 90 and regimen-related death, graft failure, or select grade 3+ events within 30 days after transplant, respectively. Kaplan-Meier curves were used to estimate PFS and OS and the log-rank test was used to assess univariate differences between dose levels. Bayesian logistic regression and survival time models were used for multivariable analyses, with posterior probabilities greater than 0.95 or less than 0.05 considered significant. Results 57 patients were enrolled, of which 18 (32%) had received a prior auto-HCT. A total of 3, 5, 24 and 25 patients received 25, 50, 75 and 100 mg of lenalidomide, respectively. Median age at auto-HCT was 60 (34-72) years. Median prior lines of treatment were 3 (1-11). Twenty-two patients (39%) were lenalidomide-refractory at study entry. Patient characteristics did not differ significantly between the lenalidomide dose levels. In total, only 2 dose limiting toxicities were seen, both at dose level 75mg. Two patients died of nonrelapse causes (viral infection 1, cardiac failure 1) for a treatment-related mortality of 3%. Median time to both neutrophil and platelet engraftment was 11 days. One patient developed a second primary malignancy (squamous cell cancer of the skin). By day +90, 8 patients (14%) had achieved a CR, 25 (44%) a CR or very good partial response (VGPR), and 42 (74%) a CR, VGPR or partial response (PR), with no significant differences in response rates among the 4 lenalidomide dose levels. By day 180, 12 patients (21%) had achieved a CR. Multivariable Bayesian logistic regression revealed that high-risk cytogenetics, bone marrow disease burden and number of prior lines of treatment were each significantly associated with a lower probability of reaching CR by day 90. With a median follow up of 12.3 months (range 0.5-41), median PFS was 23.7 months and median OS had not yet been reached. The 1-year progression-free rate was 64% (95% CI: 49-75%). Multivariable Bayesian survival time models found both dose level and longer time between diagnosis and transplant to be significantly beneficial to both OS and PFS. In addition, high risk cytogenetics and LDH were significantly harmful to OS, and LDH was moderately harmful for PFS as well (Figures 1 and 2). Conclusion: Lenalidomide up to 100 mg PO daily x 7 can be safely combined with high dose melphalan and auto-HCT. Our previous data has shown a median PFS of 12.3 months in a comparable population. Thus this treatment regimen yields an encouraging PFS, offering relapsed or refractory patients another option for disease control. Figure 1. PFS by lenalidomide dose level (N=57, Events=24) Figure 1. PFS by lenalidomide dose level (N=57, Events=24) Figure 2. OS by lenalidomide dose level (N=57, Deaths=12) Figure 2. OS by lenalidomide dose level (N=57, Deaths=12) Disclosures Shah: Sanofi Aventis: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding. Off Label Use: This presentation discusses lenalidomide in a transplant preparative chemotherapy combination. . Shah:Onyx Pharmaceuticals: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Millennium Pharmaceuticals: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Array: Consultancy, Research Funding. Orlowski:Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: The Takeda Oncology Company: Membership on an entity's Board of Directors or advisory committees, Research Funding; Spectrum Pharmaceuticals: Research Funding; JW Pharmaceutical: Research Funding; Array BioPharma: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Janssen Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Champlin:Celgene: Consultancy, Research Funding.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2118-2118 ◽  
Author(s):  
Pieter Sonneveld ◽  
Emilie Asselbergs ◽  
Bronno Van der Holt ◽  
Sonja Zweegman ◽  
Marie jose Kerstens ◽  
...  

Abstract Background: Carfilzomib has significant activity in newly diagnosed Multiple Myeloma (MM). We present an update of a Phase 2 trial of dose-escalated Carfilzomib combined with Thalidomide and Dexamethasone (CTd). Introduction: This investigator sponsored, dose escalation phase 2 trial was designed to evaluate the clinical efficacy of standard dose Carfilzomib (C) (20/27 mg/m2) combined with Thalidomide (T) and Dexamethasone (D) (CTd) as induction therapy followed by high-dose Melphalan and autologous stem cell transplantation (ASCT), followed by consolidation therapy with CTd in transplant eligible patients with newly diagnosed symptomatic MM,. The second objective was to establish the maximum tolerated dose of Carfilzomib in this combination. Fifty patients were included in the first part who received 4 cycles of C at 20 mg/m2 i.v. on days 1 & 2 followed by 27 mg/m2 on days 8, 9, 15, 16 of cycle 1 and on days 1, 2, 8, 9, 15 & 16 of all subsequent 28-day cycles, T 200 mg p.o. days 1 through 28 of a 28 day cycle and D 40 mg p.o. on days 1, 8, 15 & 22 of a 28 day cycle. In the second part 3 cohorts of 20 patients each were treated with escalated dose of C at 20/36 mg/m2,20/45 mg/m2 and 20/56mg/m2, respectively with T and D at the same dose. Stem cell harvest was performed with cyclophosphamide 2 g/m2 and G-CSF. Patients received high-dose Melphalan (HDM, 200 mg/m2) and ASCT, followed by consolidation therapy consisting of 4 cycles CTd with C 27 mg/m2 (part1, n=50) or 36 mg/m2 or 45 mg/m2 or 56 mg/m2 days 1, 2, 8, 9, 15 & 16 of a 28 day cycle, respectively, combined with T 50 mg days 1-28 of a 28 day cycle and D 20 mg days 1, 8, 15, 22 of a 28 day cycle. Thrombosis prophylaxis was prescribed. The primary endpoint was very good partial response (VGPR) after 4 CTd cycles: secondary endpoints were complete response (CR), stringent CR (sCR) and overall response (≥ PR) according to IMWG criteria pre- and post HDM, progression-free (PFS) and overall survival (OS). Results: 111 patients were included as of 1st July 2014. We here report the response of all cohorts with a median follow-up of 34, 19, 12 and 6 months, respectively. Median age was 58 yr and ISS stages II and III were 40% and 27%, respectively. The CTd regimen was well tolerated. Fifteen patients discontinued treatment because of non-eligibility (n=3), refusal (n=2), toxicity (n=7) or progression (n=3). Safety analysis was available for all treatments in cohorts 27mg/m2 through 45mg/m2 and for induction cycles in cohort 56mg/m2. Non-hematological SAEs for the two lower dose levels were infections (n=8), polyneuropathy gr 2 (n=5), cardiac (n=3) and tumor lysis syndrome (n=2) (ASH 2013). Non-hematological SAEs for dose level 45mg/m2 (n=22) included thrombosis (n=1), reversible gastrointestinal event (n=2) and infections (n=5). At dose level 56mg/m2 SAEs were thrombosis (n=2), infections (n=3), reversible cardiac event (n=1). In 111 patients 4 cardiac events were observed (2 grade 2, 2 grade 3) 3 of which resolved completely. Two patients discontinued therapy because of thrombosis (n=1) and pneumonia (n=1). Stem cell harvest was successfully accomplished with >3x10*6 CD34+ yield in 85/85 patients and HDM/ASCT was performed with complete hematologic recovery in 77/78 patients. The primary endpoint ≥VGPR and CR was achieved in 94% and 56% (27mg/m2), 75% and 65% (36mg/m2), 91% and 55% (45mg/m2), 75% and 20% (56mg/m2, induction only). Of 25 CRs in dose levels 36mg/m2 and 45mg/m2, 9 (36%) were stringent CR with no clonal plasma cells in bone marrow and negative serum-free lite. VGPR + CR increased from 63% after induction to 73% after HDM/ASCT and 86% after consolidation, respectively. For CR these figures were 18%, 34% and 58%, respectively. Overall response and CR were not significantly different between dose cohorts. Responses did not differ between poor risk (gain 1q or t(4;14) or del17p) and standard risk FISH. At a median follow-up of 21 months for dose levels 27mg/m2, 36mg/m2 and 45mg/m2 ,78% of patients are alive without progression or relapse. PFS at 18 months is 88 %. Three patients died of myeloma. There were 2 second primary malignancies. Analyses for revised ISS and molecular subgroups will be presented. Conclusion: C combined with T and D is a safe and effective regimen for newly diagnosed MM. Dosing of Carfilzomib up to 56mg/m2 was well tolerated. This trial was registered as NTR2422. Carfilzomib and an unrestricted study grant were provided by ONYX Pharmaceuticals, an Amgen subsidiary. Disclosures Sonneveld: Celgene: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Onyx: Honoraria, Research Funding; Millenium: Honoraria, Research Funding. Zweegman:Celgene: Membership on an entity's Board of Directors or advisory committees; Millennium: Membership on an entity's Board of Directors or advisory committees; Janssen-Cilag: Membership on an entity's Board of Directors or advisory committees. Palumbo:Bristol-Myers Squibb: Consultancy, Honoraria; Genmab A/S: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Janssen-Cilag: Consultancy, Honoraria; Millennium Pharmaceuticals, Inc.: Consultancy, Honoraria; Onyx Pharmaceuticals: Consultancy, Honoraria; Array BioPharma: Honoraria; Amgen: Consultancy, Honoraria; Sanofi: Honoraria.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2269-2269 ◽  
Author(s):  
Nina Shah ◽  
Peter F Thall ◽  
Denái R. Milton ◽  
Qaiser Bashir ◽  
Simrit Parmar ◽  
...  

Abstract Introduction While high dose chemotherapy and autologous hematopoietic stem cell transplantation (auto-HCT) is an accepted part of up front therapy for patients with multiple myeloma (MM), the role of this treatment modality for relapsed patients is still evolving. In light of data suggesting safety and synergy in combining novel therapeutics with traditional cytotoxic chemotherapy, we hypothesized that lenalidomide could be safely combined with high dose melphalan in the salvage auto-HCT setting and yield a meaningful duration of disease control. Methods We conducted a phase I/II study of lenalidomide and high dose melphalan + auto-HCT. MM patients with relapsed or progressive disease were treated with 7 days of oral lenalidomide (doses of 25, 50, 75 or 100 mg daily for the 7 days) on days (-8) to (-2). High dose melphalan (total of 200 mg/m2) was administered as 100 mg/m2 IV on days (-3) and (-2) followed by auto-HCT on day 0. The Eff-Tox method of Thall, Cook, and Estey was used for dose escalation with cohorts of 3 to maximize the trade-off between efficacy and toxicity, defined as CR at day 90 and regimen-related death, graft failure, or select grade 3+ events within 30 days after transplant, respectively. Kaplan-Meier method was used to estimate progression-free survival (PFS) and overall survival (OS) and the log-rank test was used to assess univariate differences between dose levels. Bayesian logistic regression and survival time models were used for multivariable analyses, with posterior probabilities greater than 0.95 or less than 0.05 considered significant. Initial results after 12.3 months of follow-up were published in 2015; we now present an update with 39.8 months of follow-up. Results 57 patients were enrolled, of which 18 (32%) had received a prior auto-HCT. A total of 3, 5, 24 and 25 patients received 25, 50, 75 and 100 mg of lenalidomide, respectively. Median age at auto-HCT was 60 (34-72) years. Median prior lines of treatment were 3 (1-11). Twenty-two patients (39%) were lenalidomide-refractory at study entry. Patient characteristics did not differ significantly between the lenalidomide dose levels. In total, only 2 dose-limiting toxicities were seen, both at dose level 75 mg. Two patients died of nonrelapse causes (viral infection 1, cardiac failure 1) for a treatment-related mortality of 4%. Median time to both neutrophil and platelet engraftment was 11 days. One patient developed a second primary malignancy (squamous cell cancer of the skin). 63% received maintenance therapy, (54% lenalidomide-based). By day +90, 8 patients (14%) had achieved a complete response (CR), 17 (30%) a very good partial response (VGPR), and 17 (30%) a partial response (PR), with no significant differences in response rates among the 4 lenalidomide dose levels. Best responses were PR: 26%, VGPR: 18%, near CR: 18%, CR: 7%, stringent CR: 23% for a ≥VGPR rate of 66. 23% achieved bone marrow minimal residual disease negativity by flow cytometry. Median time to achieve best response was 92 days (range: 16-732). One patient (2%) had progressive disease and 3 patients (5%) achieved only stable disease. Multivariable Bayesian logistic regression revealed that high-risk cytogenetics, (deletion 13q, t(4:14) or del 17p) by conventional cytogenetics or (t(4:14), t(14:16) or del17p by fluorescent in-situ hybridization), bone marrow disease burden and number of prior lines of treatment were each significantly associated with a lower probability of reaching CR by day 90. With a median follow up of 39.8 months (range: 0.5- 66.9), median PFS was 17.1 months (95% CI: 10.8 - 23.0, Figure 1) and median OS was 48.0 months (95% CI: 22.6 months, not estimated, Figure 2). There was no significant effect of dose level on PFS or OS. Multivariable Bayesian survival time models found high-risk cytogenetics to be significantly harmful to both OS and PFS. In addition, degree of plasma cell infiltration of bone marrow before auto-HCT was significantly harmful to PFS. Conclusion: Lenalidomide up to 100 mg PO daily x 7 can be safely combined with high dose melphalan and auto-HCT. Longer follow-up demonstrates PFS and OS as comparable to other salvage treatments for MM, suggesting that this regime can be applied as a part of the sequence of therapies for these patients. Figure 1 PFS of 17.1 months (95% CI: 10.8 - 23.0; N=57, Events=48) Figure 1. PFS of 17.1 months (95% CI: 10.8 - 23.0; N=57, Events=48) Figure 2 OS of 48.0 months (95% CI: 22.6 months, not estimated; N=57, Deaths=28) Figure 2. OS of 48.0 months (95% CI: 22.6 months, not estimated; N=57, Deaths=28) Disclosures Orlowski: Takeda Pharmaceuticals: Research Funding. Champlin:Intrexon: Equity Ownership, Patents & Royalties; Ziopharm Oncology: Equity Ownership, Patents & Royalties.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3960-3960 ◽  
Author(s):  
Douglas W. Sborov ◽  
Misty Lamprecht ◽  
Don Benson ◽  
Karen Tackett ◽  
Yvonne A Efebera ◽  
...  

Abstract Introduction: Severe mucositis in the autologous transplant setting has been correlated with adverse outcomes; longer febrile neutropenia duration, doubling of infectious risk, 2.7 additional days of total parenteral nutrition, 2.6 additional days of IV narcotics, increased length of stay (LOS), 3.9-fold increase in 100-day mortality, and US$25,405 increase in hospital charges (Sonis, JCO, 2001 19(8)). In a 40 patient randomized trial investigating cryotherapy (6 hours versus none) following high dose melphalan, grade 3/4 mucositis occurred in only 14% of patients using cryotherapy compared to 74% of patients using saline rinses (Lilleby, BMT, 2006 37). Prolonged cryotherapy is a significant hardship for patients and has resulted in nausea, vomiting, headache, toothache, and chills. We performed a randomized study investigating 2 versus 6 hours of cryotherapy in multiple myeloma (MM) patients undergoing autologous stem cell transplant (ASCT) with melphalan conditioning. Hypothesis: We hypothesized that a 2-hour cryotherapy regimen would be non-inferior to 6-hours in severity of mucositis, LOS, and incidence of bacteremia. Methods: We conducted a non-inferiority investigation of 146 sequential MM patients undergoing high dose melphalan with autologous stem cell rescue. Patients were consented and randomized to either 2 (n = 73) or 6 hours (n = 73) of cryotherapy via block randomization based on hemoglobin (less or greater than 11 g/dL), fat free mass (30-50, 50-70, >70 kg), or measured 24hr creatinine clearance (<30, 30-60, >60 mL/min). The cryotherapy process consisted of patients’ melting shaved ice inside their mouth for the designated period of time; flavoring with snow cone syrup was permitted. Inpatient nurse practitioners graded mucositis via WHO criteria. Patients received antifungal (fluconazole) and antiviral (acyclovir or valacyclovir) prophylaxis. Subset analyses investigated the incidence of bacteremia in all patients. Results: Median age was 59 years (range 35 - 72) and 60 (range 38 – 71), and the median measured creatinine clearance was 90.6 mL/min (range 0.2 – 168.7) and 85.4 mL/min (range 21.5 – 196.5) for the 2 hour and 6 hour groups respectively. Length of hospitalization (mean of 15 days) did not differ significantly between the 2 cohorts (p = 0.54). Mucositis was graded daily after melphalan infusion. In the 2-hour cohort, 59% of the patients had mucositis (31 patients with grade 1, 10 with grade 2, and 2 patients with grade 3). In the 6-hour cohort, 64% had mucositis (35 patients with grade 1, 9 with grade 2, and 3 patients with grade 3). These results suggest that 2-hour cryotherapy was not inferior to 6-hour therapy in decreasing mucositis grade. In the entire 146 patient group, approximately 30% developed a positive blood culture after transplant, including 25 (34%) and 20 (27%) in the 6-hour and 2-hour groups respectively. The three most common infectious organisms included gram negatives (n = 12 patients), polymicrobial (n = 7), and non-group A streptococcus (n = 7). In the cohort treated with 2-hour cryotherapy, positive blood cultures did not correlate with grade of mucositis (r = 0.05, p = 0.65). Conclusions: In MM patients undergoing ASCT, 2-hour cryotherapy did not increase mucositis compared to 6-hours. The incidence of blood stream infection was not different between groups. In addition, having an infection did not correlate with grade of mucositis.These results suggest that a 2-hour cryotherapy regimen is not inferior to a 6-hour regimen, and may be considered a standard supportive care measure in patients receiving high dose melphalan. Disclosures Hofmeister: Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Millenium: Honoraria, Research Funding; ARNO Therapeutics: Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3314-3314 ◽  
Author(s):  
Taiga Nishihori ◽  
Melissa Alsina ◽  
Jose Ochoa ◽  
Omar Alexis Castaneda Puglianini ◽  
Rachid Baz ◽  
...  

Background: High-dose melphalan and autologous hematopoietic cell transplantation (HCT) remains a crucial treatment modality for patients with multiple myeloma (MM). Strategies to improve the conditioning regimen have been explored with addition of novel targeted therapies previously with limited success. Selinexor, an orally available selective inhibitor of nuclear export (SINE), targeting Exportin-1 (XPO-1), was recently approved by the Food and Drug Administration (FDA) for relapsed/refractory MM. Our pre-clinical data show synergy between selinexor and bifunctional alkylating agents in several MM models. Therefore, we hypothesized that the addition of selinexor to high-dose melaphalan would be safe and improve outcomes of autologous HCT in MM. Methods: We designed a single institution, standard 3+3 dose escalation phase 1 study to evaluate the combination of selinexor (given at 40 mg po (dose level 1); 60 mg (dose level 2); and 80 mg (dose level 3) on days -3 and -2 before melphalan) and high-dose melphalan (100 mg/m2 IV on days -3 and -2) as a conditioning regimen for autologous HCT in patients with MM achieving either partial response (PR) or very good partial response (VGPR) after less than 4 lines of systemic anti-myeloma chemotherapy (NCT02780609). The primary objective was to establish a maximum tolerated dose (MTD) and identify a recommended phase 2 dose (RP2D). Results: From 08/2017 to 03/2019, a total of 12 MM patients (pts) received autologous HCT under the phase 1 protocol at Moffitt Cancer Center. Baseline characteristics included: a median age of 57 (range, 43-69); M:F = 7:5; IgG subtype=9, light chain type=2, IgD subtype=1; 92% with Durie-Salmon stage 3; 22% with high-risk disease based on del17p/t(4;14) (2/9, n=3 with unknown risk); a median number of induction=1 (range, 1-2); all received bortezomib-based induction, 83% received immunomodulatory agent, 17% received daratumumab. Pre-HCT responses were PR=4; VGPR=8. Pts received a median of 4.16 (range, 2.16-5.73) million CD34+ cells/kg. Neutrophil engraftment occurred with a median of 11 (range 11-12) days, and a platelet engraftment with a median of 15 (range, 10-36) days. Three pts each entered in dose level 1 and 2; and 6 pts at dose level 3. One pt in dose level 2 did not receive dexamethasone on day -1 due to grade (G) 3 hyperglycemia. One pt in dose level 3 (80 mg selinexor) did not receive day -2 dose of selinexor due to liver function test (LFT) abnormality (ALT > 2x ULN) which was considered as dose-limiting toxicity (DLT) as second dose of selinexor was not given. LFTs normalized after HCT. Dose level 3 was expanded to 3 additional pts and no additional DLTs were observed. Treatment-related serious adverse events (SAEs) included: G3 febrile neutropenia=3, G3 diarrhea=1, G3 nausea=1, G3 small bowel obstruction=1, G3 acute kidney injury=1, G3 lung infection=1. Post-HCT responses at day +90 were complete response (CR)=2, VGPR=6, PR=3, and progression=1. CR conversion rate was 16.7% though phase 1 portion of the study was not powered to evaluate the CR rate. Therefore, RP2D was established as selinexor 80 mg on days -3 and -2. The study is proceeding to the phase 2 portion to assess the efficacy of this combination. Conclusions: The combination with selinexor 80 mg po with high-dose melphalan at 100 mg/m2 on days -3 and -2 (dose level 3) was well tolerated and engraftment kinetics were not altered. A phase 2 study of selinexor 80 mg with high-dose melphalan and autologous HCT is ongoing (NCT02780609). Disclosures Nishihori: Karyopharm: Research Funding; Novartis: Research Funding. Alsina:Amgen: Speakers Bureau; Bristol-Myers Squibb: Research Funding; Janssen: Speakers Bureau. Baz:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Research Funding; Merck: Research Funding; Sanofi: Research Funding; Bristol-Myers Squibb: Research Funding. Shain:Sanofi Genzyme: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Consultancy; AbbVie: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees. Brayer:Janssen: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau. Sullivan:Karyopharm: Research Funding. OffLabel Disclosure: Selinexor in combination with high-dose melphalan


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3069-3069 ◽  
Author(s):  
Antonio Palumbo ◽  
Federica Cavallo ◽  
Izhar Hardan ◽  
Barbara Lupo ◽  
Valter Redoglia ◽  
...  

Abstract Abstract 3069FN2 Background: High-dose chemotherapy with haemopoietic stem-cell improves outcome in multiple myeloma (MM). The introduction of novel agents questions the role of autologous stem-cell transplantation (ASCT) in MM patients. Aims: In this prospective randomized study, we compared conventional melphalan-prednisone-lenalidomide (MPR) with tandem high-dose melphalan (MEL200) in newly diagnosed MM patients younger than 65 years. Methods: All patients (N=402) received four 28-day cycles of lenalidomide (25 mg, d1-21) and low-dose dexamethasone (40 mg, d1, 8, 15, 22) (Rd) as induction. As consolidation, patients were randomized to MPR (N=202) consisting of six 28-day cycles of melphalan (0.18 mg/kg d1-4), prednisone (2 mg/kg d1-4) and lenalidomide (10 mg d1-21); or tandem melphalan 200 mg/m2 MEL200 (N=200) with stem-cell support. All patients enrolled were stratified according to International Staging System (stages 1 and 2 vs. stage 3) and age (<60 vs. ≥60 years). Progression-free survival (PFS) was the primary end point. Data were analyzed in intention-to-treat. Results: Response rates were similar: at least very good partial response (≥VGPR) rate was 60% with MPR vs. 58% with MEL200 (p=.24); the complete response (CR) rate was 20% with MPR vs. 25% with MEL200 (p=.49). After a median follow-up of 26 months, the 2-year PFS was 54% in MPR and 73% in MEL200 (HR=0.51, p<.001). The 2-year overall survival (OS) was similar in the two groups: 87% with MPR and 90% with MEL200 (HR 0.68, p=.19). In a subgroup analysis, MEL200 significantly prolonged PFS in both standard-risk patients without t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 46% in the MPR group vs. 78% in the MEL200 group, HR=0.57, p=.007) and high-risk patients with t(4;14) or t(14;16) or del17p abnormalities (2-year PFS was 27% for MPR vs. 71% for MEL200, HR=0.32, p=.004). In patients who achieved CR, the 2-year PFS was 66% for MPR vs. 87% for MEL200 (HR 0.26; p<.001); in those who achieved a partial response (PR), the 2-year PFS was 56% for MPR vs. 77% for MEL200 (HR 0.45; p<.001). In the MPR and MEL200 groups, G3-4 neutropenia was 55% vs. 89% (p<.001); G3-4 infections were 0% vs. 17% (p<.001); G3-4 gastrointestinal toxicity was 0% vs. 21% (p<.001); the incidence of second tumors was 0.5% in MPR patients and 1.5% in MEL200 patients (p=.12). Deep vein thrombosis rate was 2.44% with MPR vs. 1.13% with MEL200 (p=.43). Conclusions: PFS was significantly prolonged in the MEL200 group compared to MPR. This benefit was maintained in the subgroup of patients with standard- or high-risk cytogenetic features. Toxicities were significantly higher in the MEL200 group. This is the first report showing a PFS advantage for ASCT in comparison with conventional therapies including novel agents. These data will be updated at the meeting. Disclosures: Palumbo: celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees. Cavallo:Celgene: Honoraria; Janssen-Cilag: Honoraria. Cavo:celgene: Honoraria. Ria:celgene: Consultancy. Caravita Di Toritto:Celgene: Honoraria, Research Funding. Di Raimondo:celgene: Honoraria. Boccadoro:celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-9
Author(s):  
Daniel Guy ◽  
Marcus Watkins ◽  
Fei Wan ◽  
Nancy L. Bartlett ◽  
Amanda F Cashen ◽  
...  

Introduction The management of younger fit patients with mantle cell lymphoma (MCL) varies widely with no consensus on an optimal induction therapy. To date, the treatments with the longest progression-free survival incorporate a chemotherapy backbone that includes high dose cytarabine, followed by consolidation with an autologous stem-cell transplantation (ASCT) (Hermine et al. Lancet 2016, Eskelund et al. Br J Haematol 2016). Recent data showed that a regimen of bendamustine/rituximab followed by cytarabine/rituximab achieved high complete response rates with high minimal residual disease (MRD) negativity (Merryman RW et al. Blood Adv 2020). We hypothesized that adding the Bruton tyrosine kinase inhibitor acalabrutinib to the same chemotherapeutic backbone would be safe and increase complete response rates as well as minimal residual disease (MRD) negativity pre-transplant, and potentially improve clinical outcomes. Methods We conducted a single arm, single institution pilot study registered at clinicaltrials.gov (NCT03623373). Patients with untreated MCL, who were between ages 18-70 and were candidates for ASCT, were eligible. Patients received six 28-day cycles of treatment. Cycles 1-3 consisted of bendamustine 90 mg/m2 on days 1 and 2, rituximab 375 mg/m2 on day 1 and acalabrutinib 100mg BID on days 1 through 28. Cycles 4-6 consisted of rituximab 375 mg/m2 on day 1, cytarabine 2 g/m2 (1.5 g/m2 if age&gt;60) q12 hours on days 1 and 2, and acalabrutinib 100mg BID on days 1 through 7 and 22 through 28. Restaging PET/CT and response assessment based on the Lugano classification were obtained following cycles 3 and 6. After cycle 6 patients underwent leukapheresis and stem-cell collection as preparation for ASCT. Blood for MRD status was collected after cycles 2, 4 and 6 and will be evaluated using the ClonoSeq assay (Adaptive Biotechnologies). The primary objective was to determine the stem cell mobilization success rate. Secondary objectives included safety and tolerability, overall response rate (ORR), pre-transplant complete response rate (CR), and the MRD negativity rate during and after completion of therapy. Results The trial enrolled 14 patients from December 2018 to February 2020. One patient withdrew consent prior to start of treatment and another was found to have an undiagnosed adenocarcinoma shortly after starting MCL treatment. Both are excluded from the analysis. The median age was 57 years (range 52-66). 11 patients were males (92%), all patients had an ECOG performance status of 0-1. 11 patients (92%) presented with stage IV disease. The mean MCL International Prognostic Index (MIPI) score was 6.3 (25% high-risk, 42% intermediate-risk and 33% low-risk). Of the 12 patients who began treatment, 9 completed all 6 cycles. Three patients did not complete therapy due to: insurance issues (n = 1), and thrombocytopenia (n = 2) following cycle 5 and 4. The side effect profile showed expected hematologic toxicities with grade 3-4 cytopenias in all patients, mostly during cytarabine cycles. In total, 100% of patients developed grade 3-4 thrombocytopenia and 83% of patients developed grade 3-4 neutropenia. Three episodes of febrile neutropenia were observed. One patient had a grade 3 transaminase increase, and one patient had grade 3 diarrhea. No bleeding events or treatment related deaths occurred. The remainder of the side effects were low grade and the treatment was generally well tolerated. Of the 12 evaluable patients, 10 responded (ORR 83%) with 9 achieving CR (75%). One patient achieved PR prior to being removed from the study due to thrombocytopenia and then achieved CR off study. Two patients experienced PD during induction. With a median follow up of 9 months, no responding patients have relapsed. The median CD34+ stem cell collection was 3.84x106 cells/kg (range 2.77 - 5.9). MRD results will be presented at the meeting. Conclusions This is the first study attempting to combine BTK inhibition with a high dose cytarabine containing regimen. The addition of acalabrutinib to a regimen of bendamustine/rituximab followed by cytarabine/rituximab appears to be safe. The R-ABC combination will be further tested in the recently activated intergroup trial EA4181. Disclosures Bartlett: Autolus: Research Funding; BMS/Celgene: Research Funding; Forty Seven: Research Funding; Immune Design: Research Funding; Janssen: Research Funding; Kite, a Gilead Company: Research Funding; Merck: Research Funding; Millennium: Research Funding; Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Seattle Genetics: Consultancy, Research Funding; Roche/Genentech: Consultancy, Research Funding; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; BTG: Consultancy; Acerta: Consultancy; Affimed Therapeutics: Research Funding; ADC Therapeutics: Consultancy. Fehniger:ImmunityBio: Research Funding; HCW Biologics: Research Funding; Kiadis: Consultancy; Nkarta: Consultancy; Indapta: Consultancy; Wugen: Consultancy; Orca Biosystems: Consultancy; Compass Therapeutics: Research Funding. Ghobadi:Amgen: Consultancy, Research Funding; Kite: Consultancy, Research Funding; Bristol Myers Squibb: Consultancy; EUSA: Consultancy; WuGen: Consultancy. Mehta-Shah:Bristol Myers-Squibb: Research Funding; C4 Therapeutics: Consultancy; Celgene: Research Funding; Genetech/Roche: Research Funding; Innate Pharmaceuticals: Research Funding; Kyowa Hakko Kirin: Consultancy; Verastem: Research Funding; Karyopharm Therapeutics: Consultancy; Corvus: Research Funding. Kahl:Celgene Corporation: Consultancy; AstraZeneca Pharmaceuticals LP: Consultancy, Membership on an entity's Board of Directors or advisory committees; Genentech: Consultancy; Pharmacyclics LLC: Consultancy; Roche Laboratories Inc: Consultancy; BeiGene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Acerta: Consultancy, Research Funding; ADC Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2258-2258
Author(s):  
Tomer M Mark ◽  
Adriana C Rossi ◽  
Roger N Pearse ◽  
Morton Coleman ◽  
David Bernstein ◽  
...  

Abstract Abstract 2258 Background: Prior use of lenalidomide beyond 6 cycles of therapy in the treatment of multiple myeloma (MM) has been shown to negatively impact stem cell yield, but this phenomenon can be overcome with the addition of high-dose cyclophosphamide to standard G-CSF mobilization. We hypothesized that the use of plerixafor (Mozobil®) would compare similarly to chemotherapy in rescuing the ability to collect stem cells in lenalidomide-treated myeloma. Methods: We performed a retrospective study comparing the efficacy of plerixafor + G-CSF mobilization (PG) to chemotherapy + G-CSF (CG) (either high-dose cyclophosphamide at 3g/m2 or DCEP [4-day infusional dexamethasone/ cyclophosphamide/ etoposide/cisplatin]) in 49 consecutive stem cell collection attempts in patients with MM exposed to prior lenalidomide. The primary endpoint was the ability to collect sufficient stem cells for at least two transplants (minimum 5×106 CD34+ cells/kg), comparing results in terms of total exposure to lenalidomide and time elapsed from lenalidomide exposure until the mobilization attempt. The secondary endpoint was number of apheresis days required to meet collection goal. Resilts: Twenty-four patients underwent PG mobilization and twenty-five with CG (21 with G-CSF + cyclophosphamide, 4 with G-CSF+DCEP). The two groups did not differ in terms of total amount of lenalidomide exposure: median number of lenalidomide cycles for patients mobilized with PG was 6.5 (range 1.2–86.6), vs. 6 (range 2–21.6), for patients mobilized with CG (P = 0.663). The median time between mobilization and last lenalidomide dose was also similar between the two groups: 57.5 (range 12–462) days for PG vs. 154 (range 27–805) days for CG (P = 0.101). There was an equivalent rate of successful collection of 100% for PG and 96% for CG, P = 0.322. One patient failed collection in the CG group due to emergent hospitalization for septic shock during a period of neutropenia; no patient collected with PG had a serious adverse event that interrupted the collection process. Stem cell yield did not differ between the two arms (13.9 vs. 18.8 × 106 million CD34+ cells/kg for PG vs. CG respectively, P = 0.083). Average time to collection goal was also equal, with a median of time of 1 day required in both groups, (range 1–2 days for PG, 1–5 days for CG, P = 0.073). There was no relationship between amount of lenalidomide exposure and stem cell yield with either PG (P = 0.243) or CG (P = 0.867). Conclusion: A plerixafor + G-CSF mobilization schedule is equivalent in efficacy to chemotherapy + G-CSF in obtaining adequate numbers of stem cells for two autologous stem cell transplants in patients with MM exposed to lenalidomide; however, PG may be a less toxic approach than chemomobilization. Number of lenalidomide cycles has no impact on chances of stem cell collection success using either method. Disclosures: Mark: Celgene Corp: Speakers Bureau; Millenium Corp: Speakers Bureau. Zafar: Celgene Corp: Speakers Bureau. Niesvizky: Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millenium: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Onyx: Consultancy, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2154-2154
Author(s):  
Noa Biran ◽  
Shijia Zhang ◽  
Scott D. Rowley ◽  
David H. Vesole ◽  
Michele L. Donato ◽  
...  

Abstract Background: A regimen of escalating doses of thalidomide, in combination with bortezomib and high dose melphalan (Mel/Vel/Thal) was evaluated as a conditioning regimen for autologous stem cell transplantation (ASCT) in patients (pts) with multiple myeloma (MM) in a phase I/II study. Methods: Patients received Mel/Vel/Thal as a second of tandem ASCT if they achieved <CR to their first ASCT (tandem), or as conditioning for a salvage ASCT (salvage). Exclusion criteria were dose-intense therapy within 56 days, uncontrolled infections, severe organ dysfunction, Karnofsky score <70%, or painful grade 2 or greater peripheral neuropathy. Conditioning consisted of Vel 1.6 mg/m2 intravenously on days -4 and -1 with Mel 200 mg/m2 on day -2. Thal was given on days -5 through -1 and was administered in a planned step-wise dose escalation of 600, 800 and 1000 mg (in cohorts of 3 pts). Dexamethasone (Dex) 10-20 mg was given prior to Vel and Mel. All pts received G-CSF every other day starting day +3 until engraftment. Serious adverse events (SAEs) were graded according to CTCAE version 3. Results: Twenty-nine pts were enrolled: 9 in the phase 1 dose-escalation phase and an additional 20 pts in phase 2. In the phase I portion, all pts experienced somnolence, with grade 3 occurring in 1 pt at the 800 mg/day dose. Subsequently, Dex 40 mg was given with first dose of Thal at the 1000 mg level with decreased severity of somnolence. No dose limiting toxicities defined as ≥ grade 4 non-hematological SAEs occurred in the phase I portion, allowing full dose escalation with 9 pts enrolled. The maximum tolerated dose for Thal was not reached and the 1000 mg dose was chosen for the phase 2 dose expansion. No regimen related mortality occurred in either phase I or phase II portion of the study. All SAEs except lethargy and dizziness occurred after ASCT and were not attributed to Thal. The most common grade 1 and 2 non-hematologic toxicities included nausea (65.5%), mucositis (51.7%), diarrhea (48.3%), somnolence (48.3%), lethargy (27.6%), and vomiting (17.2%). The most common grade 3 non-hematologic adverse events (AEs) were neutropenic fever (58.6%), mucositis (6.9%), and somnolence (13.8%), which increased risk of falls. SAEs included somnolence (13.8%), tumor lysis syndrome (3.4%), and engraftment syndrome (3.4%). All transplant-related SAEs resolved by day +28 after ASCT. All pts achieved prompt hematological recovery with the median time to ANC >500/uL 10 days (range, 8-14 days), and platelet >20,000 12 days (range 9-26 days). All pts received at least one ASCT prior to enrolling on the study. Seventeen pts (59%) had interim salvage chemotherapy between their upfront and Mel/Vel/Thal ASCT (i.e. received a salvage ASCT), with median time from first to salvage ASCT 29 months. The remaining 12 (41%) went directly from an upfront ASCT Mel-based ASCT to the Mel/Vel/Thal ASCT (tandem ASCT) within 6 months of the first ASCT. Twenty-seven (93%) were Durie-Salmon stage III, and 13 (44%) had >2 prior lines of therapy. Of those who had Mel/Vel/Thal as a salvage ASCT, 70% had ≥3 prior lines of therapy. The overall response rate (ORR) was 69% with 38% complete remission. ORR for Mel/Vel/Thal compared to upfront Mel ASCT was 69% versus 62% with 11 patients achieving CR with Mel/Vel/Thal compared to 5 patients with Mel alone (Figure 1). Ten of 27 evaluable patients (37%) had an upgrade in response in the Mel/Vel/Thal salvage ASCT compared to their upfront ASCT: 2 pts (7%) went from PD to PR, 1 (4%) from SD to CR, 1 (4%) from PR to VGPR; 3 (11%) from PR to CR and 2 (7%) from VGPR to CR. Median PFS and OS were 9.3 and 65.4 months, respectively, with a median follow-up of 17.8 months. Of those who underwent tandem Mel followed by Mel/Vel/Thal ASCT the median PFS was 14.9 months with a median OS not yet reached at time of analysis. For the 17 patients who received a salvage Mel/Vel/Thal ASCT, median PFS from their upfront ASCT was 11.9 months, compared to 9.1 months with the salvage Mel/Vel/Thal ASCT. Conclusions: High-dose Thal up to 1000 mg daily for 5 days can be safely combined with Vel and dose-intense Mel as an ASCT conditioning regimen with acceptable toxicities. Confirmation of potential synergistic effects of this combination regimen will require an appropriately designed phase III study. Figure 1 Figure 1. Disclosures Biran: BMS: Research Funding; Merck: Research Funding; Takeda: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Celgene: Consultancy, Honoraria, Speakers Bureau. Skarbnik:Seattle Genetics: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Abbvie: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pharmacyclics: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Gilead Sciences: Honoraria, Speakers Bureau; Novartis: Honoraria, Speakers Bureau; Genentech: Honoraria, Speakers Bureau; Jazz Pharmaceuticals: Honoraria, Speakers Bureau. Siegel:Novartis: Honoraria, Speakers Bureau; Merck: Consultancy, Honoraria, Speakers Bureau; Janssen: Consultancy, Honoraria, Speakers Bureau; Amgen: Consultancy, Honoraria, Speakers Bureau; BMS: Consultancy, Honoraria, Speakers Bureau; Karyopharm: Consultancy, Honoraria; Takeda: Consultancy, Honoraria, Speakers Bureau; Celgene: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 633-633 ◽  
Author(s):  
Pieter Sonneveld ◽  
Emilie Hacker ◽  
Sonja Zweegman ◽  
Marie Jose Kersten ◽  
Edo Vellenga ◽  
...  

Abstract Abstract 633 Introduction: This independent phase 2 trial was designed to evaluate carfilzomib (C) combined with thalidomide and dexamethasone during induction and consolidation for feasibility, response and progression-free survival (PFS) in patients with newly diagnosed symptomatic MM, who were candidates for high-dose therapy. Patients with symptomatic MM and measurable disease, age 15 to 65 and no significant co-morbidity were eligible. At diagnosis Fluorescent in situ Hybridization (FISH) was performed of recurrent translocations, trisomy 9, del(17p), del (13q) and add(1q) Patients received 4 cycles of carfilzomib at 20 mg/m2 on days 1 & 2 followed by 27mg/m2 on days 8,9,15,16 of cycle 1 and on days 1,2, 8, 9, 15 & 16 of all subsequent 28-day cycles, thalidomide 200 mg days 1 – 28 of a 28 day cycle and dexamethasone 40 mg days 1, 8, 15 & 22 of a 28 day cycle. Stem cell harvest was performed with cyclophosphamide 2 g/m2 and G-CSF. Following HDM (200 mg/m2) and autologous stem cell transplantation (ASCT), consolidation therapy consisted of 4 cycles of carfilzomib 27 mg/m2 days 1, 2, 8, 9, 15 & 16 of a 28 day cycle, thalidomide 50 mg days 1–28 of a 28 day cycle and dexamethasone 20 mg days 1, 8, 15, 22 of a 28 day cycle. The primary endpoint was response, other endpoints were complete response (CR) according to IMWG criteria, immunofixation-negative CR (sCR), VGPR all pre-and post HDM, PFS and overall survival (OS). An interim analysis was planned after 20 evaluable patients, primarily to guard against excessive toxicity and/or lack of response. Results: While recruitment is still ongoing, 34 patients have been included, of which the first 20 patients were are evaluated for response and toxicity, with a median follow-up of 5 months. One patient was excluded because unavailability of data. Median age was 60 yr and ISS stages I/II/III were 8/6/5, respectively. Four patients went off treatment because of intolerance to thalidomide (n=1), tumor lysis syndrome with renal failure (n=1) or respiratory infections (n=2). Adverse events CTC grade 3+4 included tumor lysis syndrome (n=2), metabolic disorders (n=4), cardiovascular including DVT (n=5), gastrointestinal (n=2), skin rash (n=2) and reversible renal failure (n=3). Peripheral polyneuropathy grades 1+ 2 was observed in 7 (35%) of patients, but no grade 3 or higher. Responses after cycle 1 were CR + sCR 5%, VGPR 32%, PR 47%, SD 10%, NE 5% and after induction overall CR + sCR 21%, VGPR 47%, PR 16%, SD 10%, NE 5%. Median time to maximum response was 1 cycle. Secondary analysis revealed that responses occurred across cytogenetic subgroups as determined by FISH, i.e. add (1q) (n=2), t(4;14) (n=2), del(17p) (n=1) and del(13q) (n=5). Stem cell harvest was accomplished with standard CD34+ yield in all patients and HDM/ASCT was performed with complete hematologic recovery in 4/4 patients. Conclusion: Carfilzomib combined with thalidomide and dexamethasone during induction and consolidation is feasible and effective. The complete data including response after consolidation will be reported at the ASH meeting. This EMN trial was registered as NTR2422. Carfilzomib and an unrestricted grant was provided by ONYX Pharmaceuticals. Disclosures: Sonneveld: Millennium Pharmaceuticals, Inc.: Consultancy, Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Onyx: Consultancy, Research Funding. Zweegman:Celgene: Honoraria, Research Funding; Janssen-Cilag: Honoraria, Research Funding. Palumbo:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Merck: Honoraria; Amgen: Honoraria.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 152-152 ◽  
Author(s):  
Steven Le Gouill ◽  
Mary Callanan ◽  
Elizabeth Macintyre ◽  
marie-Hélène delfau-Larue ◽  
Caroline bodet-Milin ◽  
...  

Abstract Abstract 152 Mantle cell lymphoma (MCL) is a rare B-cell malignancy characterized by the t(11;14) translocation. The European MCL network has demonstrated that a sequential R-CHOP/R-DHAP chemotherapy regimen prior to autologous stem cell transplantation (ASCT) provides better disease control than R-CHOP (Hermine et al, ASH 2010, abstract 110) and that molecular minimal residual disease (MRD) measured by IGH real-time quantitative polymerase chain reaction (PCR) before and after ASCT is an important prognostic factor to predict progression-free survival (PFS) (Pott et al. Blood. 2010;115(16):3215–23). Indeed, the use of high-dose aracytine upfront before ASCT is now recommended and molecular remission appears to be a major objective for future clinical trials in MCL. It therefore appeared interesting to appreciate response rates combining standard evaluation (Cheson 1999), FDG-PET imaging (Cheson 2007) and PCR techniques after rituximab plus upfront high-dose aracytine (R-DHAP) followed by ASCT. Response rates after 4 courses of R-DHAP were one of the objectives of the LyMa trial (NCT00921414). This trial is a randomized, open-label, phase III study that evaluates the efficacy of rituximab maintenance therapy in MCL patients aged between 18 and 66 years old, undergoing first-line treatment with 4xR-DHAP and exhibiting a response after ASCT (R-BEAM). Patients who do not reach a sufficient partial remission after R-DHAP are planned to receive 4 additional courses of R-CHOP before ASCT. The LyMa trial started in September 2008 and was designed to enroll 299 patients over a 4 years period. To date (August 2012), 295 patients have been included. Herein, we report response rates according to the combination of Cheson 1999 and 2007 criteria plus molecular response rates after 4xR-DHAP and after ASCT for the first 200 enrolled patients (last inclusion in August 2011). Results: One patient withdrew consent and the analysis is therefore on 199 patients. The cohort's median age is 57.2 years (range 29.7–65.7) and 41 patients are female (20%). At diagnosis, simplified MIPI was low in 104 cases (52%), intermediate in 55 (28%) and high in 40 (20%).Twenty-five patients (12.5%) presented with a blastoid variant. The panel of pathologist experts confirmed the diagnosis in all reviewed cases. Among the 199 evaluable patients, 182 (91%) received 4 courses of R-DHAP and 12 patients (all in PR according to Cheson 99 criteria) received 4 additional courses of R-CHOP because of insufficient clinical response after R-DHAP. Among these 12 patients, 5 reached CR/CRu after R-CHOP. Ultimately, 164 patients (82%) proceeded to ASCT (158 after R-DHAP and 6 after RDHAP/R-CHOP) and 154 (77.4%) have been randomized between rituximab maintenance or no maintenance. In an intention-to-treat (ITT) analysis and according to Cheson 1999 criteria, 152 patients (76.3%) reached CR (n=74) or CRu (n=78) after 4 courses of R-DHAP while 25 patients reached PR and 8 presented with SD/Prog. According to Cheson 2007 criteria (n= 170; PET not done in 17 cases and data missing in 12 cases), 129 patients reached CR while 41 patients remained FDG-TEP positive. Response rates according to Cheson 1999 and 2007 criteria for transplanted patients (n=164) were CR (n=109)/CRu (n=45) in 94% and CR in 84.5% (129 patients underwent FDG-PET after ASCT), respectively. Regarding MRD, diagnosis samples were available for 186/199 patients. Forty-one diagnosis samples have not yet been analyzed and 14 proved to be not informative. To date, the molecular response on peripheral blood (PB) after 4 courses of R-DHAP has been assessed in 103 cases and found negative in 80 cases and positive in 22 cases (not evaluable in one case). MRD on bone marrow (BM) after 4 courses of R-DHAP has been measured in 97 cases and found negative in 59 and positive in 36 (not evaluable in one case). After ASCT, PB and BM MRD were found negative in 91 patients (95 samples have been analyzed to date) and 67 (87 samples analyzed), respectively. Thus, in the LyMa trial,CR/CRu rates after only 4 courses of RDHAP, according to Cheson 1999 and 2007 criteria, are very high confirming the major anti-tumoral impact of high-dose aracytine upfront in MCL. In addition, these encouraging results seem to be confirmed at the molecular level strengthening the interest of an MRD-guided management of MCL patients. Results will be updated at the time of the meeting and patients' outcome according to disease status will be presented. Disclosures: Ribrag: Servier: Membership on an entity's Board of Directors or advisory committees, Research Funding; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Bayer: Research Funding; Sanofi-Aventis: Research Funding; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document