Whole Exome Sequencing of Philadelphia-Negative (Ph-negative) Myeloproliferative Neoplasms (MPNs) and Myelodysplastic/Myeloproliferative Disorders (MDS/MPD)

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4593-4593
Author(s):  
Fabio P S Santos ◽  
Renato D Puga ◽  
Ricardo Helman ◽  
Welbert Oliveira Pereira ◽  
Tarcila S Datoguia ◽  
...  

Abstract Introduction: The development of next-generation sequencing has made it feasible to interrogate the entire genome or exome (coding genome) in a single experiment. Accordingly, our knowledge of the somatic mutations that cause cancer has increased exponentially in the last years. MPNs and MDS/MPD are chronic myeloid neoplasms characterized by an increased proliferation of one or more hematopoietic cell lineages, and an increased risk of transformation to acute myeloid leukemia (AML). MPNs and MDS/MPDs are heterogenous disorders, both in clinical presentation and in prognosis. We sought to determine the genetic landscape of Ph-negative MPNs and MDS/MPD through next-generation sequencing. Methods: Paired DNA (sorted CD66b-granulocytes/skin biopsy) from 102 patients with MPNs or MDS/MPD was subjected to whole exome sequencing on a Illumina HiSeq 2000 platform using Agilent SureSelect kit. Diagnosis included primary myelofibrosis (MF; N=42), essential thrombocythemia (ET; N=28), polycythemia vera (PV; N=12), chronic myelomonocytic leukemia (CMML; N=10), systemic mastocytosis (MS; N=6), MDS/MPD-Unclassified (N=2) and post-MPN AML (N=2). Tumor coverage was 150x and germline coverage was 60x. Somatic variants calls were generated by combining the output of Somatic Sniper (Washington University), Mutect (Broad Institute) and Pindel (Washington University). The combined output of these 3 tools was further filtered by in-house criteria in order to reduce false-positive calls (minimum coverage at both tumor/germline ≥8 reads; fraction of reads supporting alternate allele ≥10% in tumor and ≤10% in germline; ratio of allele fraction tumor:germline >2; excluding mutations seen in SNP databases). All JAK2 and CALR mutations were validated through Sanger sequencing. Validation of other somatic mutations is currently underway. Analysis of driver mutations was made with the Intogen web-based software, using the Oncodrive-FM and Oncodrive-cluster algorithms (www.intogen.org). Significantly mutated genes were considered as those with a q-value of <0.10. Results: We identified a total of 309 somatic mutations in all patients, with each patient having an average of 3 somatic abnormalities, fewer than most solid tumors that have been sequenced so far. Mutations occurred in 166 genes, and 40 of these were recurrently somatically mutated in Ph-negative MPNs. By the Oncodrive-FM algorithm, the following genes were identified as the most significantly mutated driver genes in Ph-negative MPNs and MDS/MPDs (in order of significance): CALR, ASXL1, JAK2, CBL, DNMT3A, U2AF1, TET2, TP53, RUNX1, EZH2, SH2B3 and KIT. By the Oncodrive-cluster algorithm, which considers clustering of mutations at a hotspot, the following genes were significantly mutated: KIT, JAK2, SRSF2 and U2AF1. Somatic mutations were seen in genes that are mutated at a low frequency in Ph-negative MPNs, including ATRX, BCL11A, BCORL1, BIRC5, BRCC3, CSF2RB, CUX1, IRF1, KDM2B, ROS1 and SUZ12. Consistent with the clinical phenotype, 96 patients (94%) had mutations that lead to increased cellular proliferation, either through activation of the JAK-STAT pathway (e.g. JAK2, CALR) or mutations that activated directly or indirectly signaling by receptor tyrosine kinases (e.g. FLT3, KIT, CBL). Besides biological pathways regulating cell proliferation, the most commonly implicated pathways included regulation of DNA methylation (e.g. DNMT3A, TET2), mRNA splicing (e.g. U2AF1, SRSF2) and histone modifications (e.g. ASXL1, EZH2), seen in 27%, 25% and 22% of patients, respectively. Abnormalities in these 3 pathways were more often seen in MF, MDS/MPD and CMML, as compared to PV and ET (65% vs. 20%; p<0.0001). Conclusions: Our study represents one of the largest series of patients with these neoplasms evaluated by whole exome sequencing, and together with the published data helps to delineate the genomic landscape of Ph-negative MPNs and MDS/MPDs. The majority of the most frequent mutations seen in Ph-negative MPNs have already been reported. Nevertheless, there are several low frequency mutations that need to be further studied and functionally validated in vitro and in vivo for a deeper knowledge of the pathophysiology of MPNs. Besides activation of cellular proliferation, abnormalities of DNA methylation, histone modification and mRNA splicing emerge as the most important biological pathways in these disorders. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1426-1426
Author(s):  
Shuozi Liu ◽  
Ping Yang ◽  
Jing Wang ◽  
Weilong Zhang ◽  
Hongmei Jing

Abstract Background: Primary testicular lymphomas (PTLs) are extra-nodal large B-cell lymphomas (LBCLs) that respond poorly to current empirical treatment options. To date, no PTL whole-exome sequencing analysis based on the Chinese population has been reported. The main objective of this study was to explore the genomic landscape of PTDLBCL, correlating the results with clinical, histological, and immunogenetic features. Methods: We retrospectively analyzed the disease characteristics in a series of 20 patients (13 paired data and 7 unpaired data). In all cases, the diagnosis of PTL was made using appropriate diagnostic criteria for the 2008 WHO classification of lymphoid tumors with combinations of histologic, immunohistochemical, flow cytometric, and genetic evaluation. Medical records were reviewed for demographic and clinical data. We performed whole-exome next-generation sequencing (NGS) and mapped the mutational landscape. Based on the differential gene results, we performed KEGG and GO enrichment analysis, and five potential new pathogenic genes for DLBCL were obtained based on the Polyphen score. Results: A total of 20 DLBCL samples were collected. All samples were subjected to whole-exome sequencing (WES). A standard bioinformatics analysis process was used to identify somatic mutations in each sample, and an average of 1200 somatic mutations was identified, involving an average of 420 mutated genes. (Figure 1.) More than 85% of the somatic mutations were found in only 1 sample, indicating that somatic mutations are highly heterogeneous. In the matched 13 cases, we validated common gene mutations that have been reported, including PIM1 53.84% (7/13), CD79B 38.46% (5/13), CDKN2A 15.38% (2/13), and MYD88 15.38% (2/13). Venn diagram shows that 25% of the mutated genes were specific to the relapsed sample. GO analysis (Figure 2) shows the functional enrichment and differences between relapsed and non-relapsed samples. Non-relapsed samples are enriched in the herpes simplex virus 1 infection pathway. (Figure 3). Focusing on relapsed/non-relapsed samples, we identified 12 mutated genes specific to relapsed samples. Mutation Polyphen scores were calculated to assess mutation deleteriousness. Five potential new pathogenic genes for DLBCL were obtained. Conclusions: Based on whole-sequencing data, we validated the previously reported common genes for PTDLBCL. In addition, we performed GO and KEGG analysis according to the relapsed and non-relapsed groups. In addition, based on the difference in enrichment results, 12 significantly enriched mutated genes in relapsed DLBCL samples are obtained, and mutation Polyphen scores are calculated to assess mutation deleteriousness. And 5 potential new pathogenic genes of DLBCL are identified. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Yuanqing Yan ◽  
Rebecca Martinez ◽  
Maria N. Rasheed ◽  
Joshua Cahal ◽  
Zhen Xu ◽  
...  

Author(s):  
Juan Chen ◽  
Yan Li ◽  
Jianlei Wu ◽  
Yakun Liu ◽  
Shan Kang

Abstract Background Malignant ovarian germ cell tumors (MOGCTs) are rare and heterogeneous ovary tumors. We aimed to identify potential germline mutations and somatic mutations in MOGCTs by whole-exome sequencing. Methods The peripheral blood and tumor samples from these patients were used to identify germline mutations and somatic mutations, respectively. For those genes corresponding to copy number alterations (CNA) deletion and duplication region, functional annotation of was performed. Immunohistochemistry was performed to evaluate the expression of mutated genes corresponding to CNA deletion region. Results In peripheral blood, copy number loss and gain were mostly found in yolk sac tumors (YST). Moreover, POU5F1 was the most significant mutated gene with mutation frequency &gt; 10% in both CNA deletion and duplication region. In addition, strong cytoplasm staining of POU5F1 (corresponding to CNA deletion region) was found in 2 YST and nuclear staining in 2 dysgerminomas (DG) tumor samples. Genes corresponding to CNA deletion region were significantly enriched in the signaling pathway of regulating pluripotency of stem cells. In addition, genes corresponding to CNA duplication region were significantly enriched in the signaling pathways of RIG-I-like receptor, Toll-like receptor, NF-kappa B and Jak–STAT. KRT4, RPL14, PCSK6, PABPC3 and SARM1 mutations were detected in both peripheral blood and tumor samples. Conclusions Identification of potential germline mutations and somatic mutations in MOGCTs may provide a new field in understanding the genetic feature of the rare biological tumor type in the ovary.


2019 ◽  
Vol 10 ◽  
Author(s):  
Alejandro Mendoza-Alvarez ◽  
Beatriz Guillen-Guio ◽  
Adrian Baez-Ortega ◽  
Carolina Hernandez-Perez ◽  
Sita Lakhwani-Lakhwani ◽  
...  

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Keiichi Akizuki ◽  
Masaaki Sekine ◽  
Yasunori Kogure ◽  
Takuro Kameda ◽  
Kotaro Shide ◽  
...  

Abstract Background The occurrence of a mediastinal germ cell tumor (GCT) and hematological malignancy in the same patient is very rare. Due to its rarity, there have been only two reports of the concurrent cases undergoing detailed genetic analysis with whole-exome sequencing (WES), and the possible clonal relationship between the both tumors remained not fully elucidated. Methods We performed whole-exome sequencing analysis of mediastinal GCT and acute myeloid leukemia (AML) samples obtained from one young Japanese male adult patient with concurrent both tumors, and investigated the possible clonal relationship between them. Results Sixteen somatic mutations were detected in the mediastinal GCT sample and 18 somatic mutations in the AML sample. Mutations in nine genes, including TP53 and PTEN both known as tumor suppressor genes, were shared in both tumors. Conclusions All in our case and in the previous two cases with concurrent mediastinal GCT and AML undergoing with whole-exome sequencing analysis, TP53 and PTEN mutations were commonly shared in both tumors. These data not only suggest that these tumors share a common founding clone, but also indicate that associated mediastinal GCT and AML harboring TP53 and PTEN mutations represent a unique biological entity.


2020 ◽  
Vol Volume 13 ◽  
pp. 6485-6496 ◽  
Author(s):  
Ao-Xiang Guo ◽  
Fan Xiao ◽  
Wei-Hua Shao ◽  
Yan Zhan ◽  
Le Zhang ◽  
...  

2018 ◽  
Vol 80 (01) ◽  
pp. 010-017
Author(s):  
Aaron Rusheen ◽  
James Smadbeck ◽  
Lisa Schimmenti ◽  
Eric Klee ◽  
Michael Link ◽  
...  

Background Cahan's criteria have been utilized since 1948 to establish causality between prior radiation treatment and the development of secondary malignancy. One major criterion specifies that histological and radiographic evidence collected before and after radiation treatment must confirm separate tumor types; however, pretreatment biopsy is rarely obtained prior to radiosurgery for vestibular schwannoma and many other skull base and cranial lesions. Therefore, in these cases Cahan's criteria cannot be validly applied. Objective This article proposes an update to Cahan's criteria using modern molecular genetic analysis for cases lacking baseline histopathology. Methods Mate-pair sequencing and whole exome sequencing of a cerebellopontine angle undifferentiated high-grade pleomorphic sarcoma (UHGPS) that developed after stereotactic radiosurgery of a presumed benign vestibular schwannoma. Results Mate-pair sequencing and whole exome sequencing of the sarcoma revealed complex chromosomal aberrations. Notably, the tumor contained a deletion in the NF2 gene at 22q12 and an in-frame deletion on exon 5 of the remaining copy of NF2. Biallelic events impacting NF2 are atypical for UHGPS but are characteristic for vestibular schwannoma. These findings help support the conclusion that the UHGPS arose from a benign vestibular schwannoma all along. Conclusions Next-generation sequencing can be successfully applied to a radiation-induced sarcoma when both the original and malignant tumors harbor separate signature genetic markers. As our understanding of the genetic profile of various tumors expand, we believe that next-generation sequencing and other genomic tools will play an increasingly important role in establishing causality between radiation and the development of secondary malignancy.


2016 ◽  
Author(s):  
Shintaro Iwata ◽  
Yasutoshi Tatsumi ◽  
Tsukasa Yonemoto ◽  
Hiroto Kamoda ◽  
Takeshi Ishii ◽  
...  

Author(s):  
Andrew V Uzilov ◽  
Patricia Taik ◽  
Khadeen C Cheesman ◽  
Pedram Javanmard ◽  
Kai Ying ◽  
...  

Abstract Context Pituitary corticotroph adenomas are rare tumors that can be associated with excess adrenocorticotropin (ACTH) and adrenal cortisol production, resulting in the clinically debilitating endocrine condition Cushing disease. A subset of corticotroph tumors behave aggressively, and genomic drivers behind the development of these tumors are largely unknown. Objective To investigate genomic drivers of corticotroph tumors at risk for aggressive behavior. Design Whole-exome sequencing of patient-matched corticotroph tumor and normal deoxyribonucleic acid (DNA) from a patient cohort enriched for tumors at risk for aggressive behavior. Setting Tertiary care center Patients Twenty-seven corticotroph tumors from 22 patients were analyzed. Twelve tumors were macroadenomas, of which 6 were silent ACTH tumors, 2 were Crooke’s cell tumors, and 1 was a corticotroph carcinoma. Intervention Whole-exome sequencing. Main outcome measure Somatic mutation genomic biomarkers. Results We found recurrent somatic mutations in USP8 and TP53 genes, both with higher allelic fractions than other somatic mutations. These mutations were mutually exclusive, with TP53 mutations occurring only in USP8 wildtype (WT) tumors, indicating they may be independent driver genes. USP8-WT tumors were characterized by extensive somatic copy number variation compared with USP8-mutated tumors. Independent of molecular driver status, we found an association between invasiveness, macroadenomas, and aneuploidy. Conclusions Our data suggest that corticotroph tumors may be categorized into a USP8-mutated, genome-stable subtype versus a USP8-WT, genome-disrupted subtype, the latter of which has a TP53-mutated subtype with high level of chromosome instability. These findings could help identify high risk corticotroph tumors, namely those with widespread CNV, that may need closer monitoring and more aggressive treatment.


Oncotarget ◽  
2016 ◽  
Vol 7 (28) ◽  
pp. 43894-43906 ◽  
Author(s):  
Hao Liu ◽  
Fengping Li ◽  
Yu Zhu ◽  
Tingting Li ◽  
Haipeng Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document