Osteocyte-Mediated Parathyroid Hormone (PTH) Signaling Regulates Hematopoietic Stem Cells Under Physiologic and Continuous PTH Exposure

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1199-1199
Author(s):  
Benjamin J. Frisch ◽  
Alexandra N. Goodman ◽  
Rhonda J. Staversky ◽  
Olga Bromberg ◽  
Xiaolin Tu ◽  
...  

Abstract The bone marrow microenvironment, including osteolineage cells, regulates hematopoietic stem cell (HSC) fate choices. Intermittent pharmacologic treatment of mice with parathyroid hormone, PTH (1-34), indirectly increases HSCs through their niche, as HSCs do not express the PTH receptor (PTH1R). Osteocytes, the most abundant osteolineage cells in bone, are a critical target of the skeletal actions of PTH and coordinate multiple cell types that are components of the HSC niche including osteoblasts, osteoclasts and resident macrophages. While osteocytes express the PTH1R, the role of osteocytes in HSC regulation is unclear. Therefore, we studied the role of osteocyte-mediated PTH regulation of HSCs, using cre recombinase driven by the 8kb-DMP1 promoter to conditionally delete PTH1R in osteocytes (OCyPTHRko mice). OCyPTHRko mice were viable, fertile, did not exhibit any significant skeletal defect as juveniles or at 6 months of age, had no significant difference in serum PTH levels, and had no significant difference in osteoblastic or mesenchymal stem cell numbers compared to WT mice. In juvenile OCyPTH1Rko mice there was a decrease in long-term HSCs as measured by flow cytometric analysis (0.0029 ± 0.00028 vs. 0.0021 ± 0.00021 % of cells, WT vs. OCyPTH1Rko p≤0.05 N≥19 mice/group). OCyPTH1Rko mice had 4 fold lower long-term engraftment capacity as measured by secondary competitive transplantation over 16 weeks (WT vs. OCyPTH1Rko donors, 2-way ANOVA p≤0.001, N≥10 mice/group) that was evident in all hematopoietic lineages. Short-term engraftment however was increased in OCyPTH1Rko mice as measured by primary competitive transplantation (WT vs. OCyPTH1Rko donors, 2-way ANOVA p≤0.01, N≥9 mice/group). These data demonstrate that physiologic PTH signaling in osteocytes regulates the balance of long-term and short-term HSC potential in juvenile, growing mice. Adult OCyPTH1Rko mice also had 5 fold lower long-term engraftment as measured by secondary competitive transplantation over 16 weeks (WT vs. OCyPTH1Rko donors, 2-way ANOVA p≤0.001, N≥15 mice/group). These findings demonstrate a previously unrecognized physiologic role of PTH signaling in HSC regulation. Having demonstrated a role for PTH signaling in HSC homeostasis, we investigated if sustained PTH elevations (as are found in vitamin D deficiency and in hyperparathyroidism) alter HSC function. Therefore, we utilized a murine model of secondary hyperparathyroidism caused by a low calcium (LCa) diet. In juvenile mice placed on the LCa diet immediately upon weaning, serum PTH levels were significantly elevated. Fourteen days on the LCa diet caused a significant reduction in long-term engraftment potential as measured by secondary competitive transplants over 22 weeks (Normal vs. LCa diet donors, 2-way ANOVA p≤0.001, N≥20 mice/group), while there was no decrease in HSCs when adult mice were placed on the LCa diet. These data suggest that sustained PTH signaling decreases microenvironmental support for HSCs in juvenile mice. We utilized the OCyPTHRko mice to study the role of osteocytes in hyperparathyroidism-induced loss of functional HSCs. In juvenile mice the lack of PTH signaling in osteocytes rescued the long-term engraftment defects, suggesting that PTH signaling in osteocytes mediates the loss of long-term HSC support caused by the LCa diet. In further support of a deleterious effect mediated by the PTH1R in osteocytes in the setting of continuous PTH, adult OCyPTH1Rko mice placed on LCa diet had superior long term HSC function. Our findings demonstrate a physiologic role for PTH in HSC regulation and identify osteocytes as a critical constituent of the HSC niche that, either directly or indirectly, contribute to maintenance of the long-term repopulating HSC pool. In addition, we show that continuous exposure to elevated levels of PTH in a model of secondary hyperparathyroidism leads to osteocyte-mediated loss of long-term engraftment potential of HSCs in juvenile mice. We speculate that removing the effect of continuous PTH from osteocytes uncovers additional HSC-supportive effects of continuous PTH, mediated by non-osteocyte HSC niche cellular populations. Together these data establish PTH as a critical regulatory signal in the HSC niche, and show that the relative contributions of niche populations to HSC regulation are modulated by age. Disclosures Calvi: Fate Therapeutics: Patents & Royalties.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 396-396
Author(s):  
Stephane Barakat ◽  
Julie Lambert ◽  
Guy Sauvageau ◽  
Trang Hoang

Abstract Abstract 396 Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Sini Luoma ◽  
Raija Silvennoinen ◽  
Auvo Rauhala ◽  
Riitta Niittyvuopio ◽  
Eeva Martelin ◽  
...  

AbstractThe role of allogeneic hematopoietic stem cell transplantation (allo-SCT) in multiple myeloma is controversial. We analyzed the results of 205 patients transplanted in one center during 2000–2017. Transplantation was performed on 75 patients without a previous autologous SCT (upfront-allo), on 74 as tandem transplant (auto-allo), and on 56 patients after relapse. Median overall survival (OS) was 9.9 years for upfront-allo, 11.2 years for auto-allo, and 3.9 years for the relapse group (p = 0.015). Progression-free survival (PFS) was 2.4, 2.4, and 0.9 years, respectively (p < 0.001). Non-relapse mortality at 5 years was 8% overall, with no significant difference between the groups. Post-relapse survival was 4.1 years for upfront-allo and auto-allo, and 2.6 years for the relapse group (p = 0.066). Survival of high-risk patients was reduced. In multivariate analysis, the auto-allo group had improved OS and chronic graft-versus-host disease was advantageous in terms of PFS, OS, and relapse incidence. Late relapses occurred in all groups. Allo-SCT resulted in long-term survival in a small subgroup of patients. Our results indicate that auto-allo-SCT is feasible and could be considered for younger patients in the upfront setting.


2012 ◽  
Vol 209 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Anna Mansour ◽  
Grazia Abou-Ezzi ◽  
Ewa Sitnicka ◽  
Sten Eirik W. Jacobsen ◽  
Abdelilah Wakkach ◽  
...  

Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 736-744 ◽  
Author(s):  
Steven W. Lane ◽  
Serena De Vita ◽  
Kylie A. Alexander ◽  
Ruchan Karaman ◽  
Michael D. Milsom ◽  
...  

Abstract Hematopoietic stem cells (HSCs) interact with osteoblastic, stromal, and vascular components of the BM hematopoietic microenvironment (HM) that are required for the maintenance of long-term self-renewal in vivo. Osteoblasts have been reported to be a critical cell type making up the HSC niche in vivo. Rac1 GTPase has been implicated in adhesion, spreading, and differentiation of osteoblast cell lines and is critical for HSC engraftment and retention. Recent data suggest a differential role of GTPases in endosteal/osteoblastic versus perivascular niche function. However, whether Rac signaling pathways are also necessary in the cell-extrinsic control of HSC function within the HM has not been examined. In the present study, genetic and inducible models of Rac deletion were used to demonstrate that Rac depletion causes impaired proliferation and induction of apoptosis in the OP9 cell line and in primary BM stromal cells. Deletion of Rac proteins caused reduced trabecular and cortical long bone growth in vivo. Surprisingly, HSC function and maintenance of hematopoiesis in vivo was preserved despite these substantial cell-extrinsic changes. These data have implications for therapeutic strategies to target Rac signaling in HSC mobilization and in the treatment of leukemia and provide clarification to our evolving concepts of HSC-HM interactions.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1394-1394
Author(s):  
Sachiko Ezoe ◽  
Itaru Matsumura ◽  
Hirokazu Tanaka ◽  
Yusuke Satoh ◽  
Takafumi Yokota ◽  
...  

Abstract Sir2 (silent information regulator 2) is a member of a gene family (sirtuins) encoding NAD(+)-dependent histone deacetylases, which leads to increased DNA stability and prolonged lifespan in Saccharomyces cerevisiae and Caenorhabditis elegans. In mammalians, SIRT1 has also been found to function as a deacetylase for numerous protein targets involved in various cellular pathways, including stress responses, apoptosis, and neural axonal degeneration. However, the effects of SIRT1 on hematopoiesis remains unknown. We previously reported that the SIRT1 inhibitor, nicotinamide(NA), promoted the differentiation of murine hematopoietic stem/progenitor cells, and its activator, Resveratrol, suppressed the differntiation. In this report, we analysed the differentiation of stem/progenitor cells derived from SIRT1 KO mice. Because SIRT1 KO mice can survive less than a week after birth, we performed experiments using c-Kit(+)Lineage(−)Sca-1(+) cells (KSLs) derived from KO mice fetal liver. At first, we cultured KSLs with the cytokine cocktail containing SCF, IL-6, Flt3L, and TPO, which is utilized for the expansion of stem cells. After five day culture, we estimated the population which remains in KSL fraction. As a result, percentage of KSLs from KO fetal liver was less than 5%, while that from WT was about 15%. We also examined the colony formation of KO and WT fetal liver KSL cells using replating assays. At the first plating, total number of colonies developed from KO fetal liver KSLs was smaller than that from WT by 30–40%, and at the third plating, there could be detected no colonies from KO, while 20–30 colonies were observed from WT. Furthermore, we performed serial transplantation assays using WT and KO fetal liver KSLs. Although after primary transplant, we detected no significant difference in repopulation from KO KSLs compared to WT controls, three weeks after secondary transplant, % chimerism from KO KSLs was reduced to 1/2 compared with that from WT KSLs. These results suggested that Sirt1 suppresses the differentiation and promotes self-renew of hematopoietic stem/progenitor cells. To dissect the roles of target molecules of Sirt1 in suppression of differentiation, we first examined the mRNA expressions of some cell cycle-relating molecules in KO and WT fetal liver KSLs. As consequence, p16Ink4A and p19Arf were detected only in KO KSLs. Then we analyzed the roles of molecules which may effect those expressions. First, we examined the effects of MAPkinases inhibitors on the differentiation of KO and WT fetal liver KSLs. During the culture with SCF, IL-6, Flt3L, and TPO, the addition of p38 inhibitor(SB202190), or MEK1 inhibitor(PD98059), or JNK inhibitor did not change the effects of the SIRT1 targeting. Then it was suggested that MAPkinase pathways have little relation with the SIRT1-induced suppression of differentiation. Next we examined the role of p53, which was reported to combine with SIRT1 and to be deacetylated and repressed by SIRT1. KO and WT fetal liver KSLs were cultured with p53 inhibitor (pifithrin?), which partially cancelled the promotion of differntiation in SIRT1 KO KSLs. This result suggested that SIRT1 might inhibit differentiation of KSLs partially by antagonizing p53 activity. Next we examined the role of Foxo3a, a downstream molecule of SIRT1. Enforced expression of constitutive active form of Foxo3a(FKHRL1TM) also cancelled the promotion of differentiation in SIRT1 KO KSLs. As conclusion, we demonstrate that SIRT1 suppresses the differentiation of hematopoietic stem/progenitor cells by antagonizing p53 and enhancing Foxo3a activities, and contributes to maintenance of stem cell properties and stem cell pool.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1166-1166 ◽  
Author(s):  
Zhenrui Li ◽  
Keiyo Takubo ◽  
Pengxu Qian ◽  
Toshio Suda ◽  
Linheng Li

Abstract Hematopoietic stem cells (HSCs) maintenance is required to preserve stem cell pool and compensate the dynamic loss of blood cells. Previous studies of HSCs maintenance mainly focus on the quiescent versus active state of HSCs and accumulated evidence indicates that metabolism plays a critical role in coordinating divergent stem cell states. While recent reports largely emphasized the role of catabolic glycolysis on long-term (LT) HSC maintenance, we found that free amino acids are enriched in primitive stem cell by ~1.5 fold. Given that amino acid metabolism in HSCs is largely unknown, we first cultured bone marrow (BM) cells with individual amino acid deprived medium to study the function of individual amino acids on HSCs in vitro. Surprisingly, we found that specific amino acids, including valine, methionine and threonine (VMT), are essential for maintaining primitive HSCs, as removing them (VMT) individually from media dramatically reduced primitive HSC number by over 95%. Thus, we hypothesize that specific amino acids are critical for preserving the stem cell pool and maintaining their function. To test it, we transplanted equal number of cells cultured with complete or individual VMT deprived media into lethally irradiated recipient mice and found VMT deprivation in vitro impaired stem cell repopulation ability. We also identified the amino acid transporter X (AATX) that is specifically expressed in HSCs and maintain VMT levels within the cell. Furthermore, inhibition of AATX reduced LT-HSC (LSK CD34- Flk2-) number in vivo. BM transplantation indicated that AATX inhibition impaired stem cell long-term reconstitution ability by over 2 fold. Our studies uncovered a role of amino acid metabolism in HSC maintenance and discovered the underlying molecular mechanism related to the amino acid transport. This finding may impact clinical treatment of blood disorders including leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5452-5452
Author(s):  
Ying Wang ◽  
De Pei Wu ◽  
Aining Sun ◽  
Zhengming Jin ◽  
Huiying Qiu

Abstract Non-T-cell-depleted maternal HLA-haploidentical hematopoietic stem cell transplantations(SCT) have been reported feasible based on the hypothesis that long-term fetomaternal microchimerism(FMC) is linked with hyporesponsiveness to inherited paternal antigens(IPAS),but the hypothesis is still in debate due to lack of direct evidence. To determine whether the existence of such microchimerism affect the outcome of maternal HLA-haploidentical SCT, we investigated the outcomes of 18 patients (median age 19) with hematologic malignancies (ALL 8, AML 6, CML 3, NHL 1) who underwent haploidentical SCT from mothers with the same regime from July 2003 to January 2005. Donor was treated with granulocyte colony stimulating factor subcutaneously at a dose of 300μg per day for 5 days before bone marrow harvesting. Leukaphereses were performed using a continuous-flow blood cell separator if CD34+ cells in the bone marrow harvest were less than 4.0×106 cells/kg. Patients with CML or AML in CR received 7.5Gy TBI based standard-intensity regimen combined with cyclophosphamide plus cytarabine. The remaining received non-TBI standard-intensity regimen consisting of cytarabine, busulfan and cyclophosphamide. Antithymocyte globulin(ATG) at a dosage of 2.5mg/kg/day on days −5 to −3 was given as an additional immunosuppressive measure in all patients. To prevent GVHD, patients also received cyclosporin at a dose of 3mg/kg/day as a continuous infusion from day −10, 30mg/kg/day mycophenolate mofetil starting on day −10, and short-term methotrexate administered on days 1, 3, 6, 11 at doses of 15, 10, 10, and 10mg/m2. Among all these patients, microchimerism were confirmed with nested polymerase chain reaction using sequence-specific primers(PCR-SSP) typing for HLA in 10 donor-recipient pairs. In the 2 categories as to whether the microchimeric status of the donor is positive or negative, they had similar characteristics in the background factors such as recipient sex, type of conditioning regime, stem cell source, and disparity of HLA except recipients of positive group had more CML. Engraftment was obtained in all patients. As of august 1, 2005, 5 patients died (1 of relapse, 4 of complication), other 13 patients were alive and free of disease. The 2-year overall survival for the whole cohort was 58%. Although there was a survival advantage for pairs with microchimerism over pairs without it, the influence on outcome was not statistically significant (P=0.9, log-rank test). The cumulative incidences of grade Ò/Ô acute graft-versus-host disease (GVHD) were 39% (95%CI, 17%–64%). Also no significant difference was observed between the two groups. Extensive chronic GVHD developed in 5 of 13 patients who could be evaluated. These results indicate maternal HLA-haploidentical hematopoietic SCT is a acceptable option for patients who lack immediate access to a conventional stem cell source, but the presence of fetomaternal microchimerism may not correlate to the existence of immunological tolerance between mother and offspring.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2550-2550
Author(s):  
Gerald A. Colvin ◽  
David Berz ◽  
Peter J. Quesenberry ◽  
Elaine Papa ◽  
Liansheng Liu

Abstract Abstract 2550 Poster Board II-527 We evaluated the hypothesis that there was a homing defect between long-term (LT) hematopoietic stem cell (HSC) (KLS-Flk2-) and ST-HSC (KLS-Flk2+) that explained differences in engraftment potential and duration. Short-term HSC by definition have limited self-renewal capacity, generally described as giving rise to lymphohematopoiesis for 4–12 weeks before senescence. We performed three large animal engraftment studies into lethally ablated mice (950cGy split dose) looking at engraftment of both ST and LT-HSC cells delivered via intravenous, intraperitoneal and intra-femoral route. Two-hundred or 500 cells derived from B6/SJL mice were administered to each animal along with 300,000 recipient (C57/BLK) whole bone marrow cells for radioprotection following prior published studied [PNAS:98;14541, Stem Cells 24:1087] with optimization of flourochromes for better discrimination with our Cytopeia sorter. The animals were serially transplanted after eight months or one year to secondary recipients. In our hands, the ST-HSC engrafted animals did not lose chimerism over time. Review of the literature revealed that there were not confirmatory studies from those published from the initial one publication describing the ST-HSC. We found the ST-HSC were not short-term and persisted for one year in primary recipients and at least 3 months in secondary recipients. Engraftment kinetics favored LT-HSC over ST-HSC with engraftment examples at one year of 62% compared with 30% respectively when administered intravenously, 10% verses 4% given intra-femoral and 0.5% verse 0.3% given intraperitoneal. Chimerism was on average 50% better for the LT-HSC when compared with the ST-HSC and was irrespective of route proving that the differences seen are not due to homing deficiency but rather intrinsic differences in the two stem cell pools. Prior studies gave a maximum of 100 cells. Cell number was purposely increased for better differentiate of subtle differences in engraftment kinetics for statistical reasons. To avoid contamination of Flk2+ cells in the Flk2- cohort and vise-versa, discrimination of the gates were enhanced from that which was published prior. Double sorting of the cells confirmed that there was no appreciable cross contamination but obviously we cannot totally rule that out as a potentially confounding factor. In conclusion we found that ST-HSC as described have long-term capacity with intrinsic differences in engraftment potential that is not driven by a homing defect. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document