scholarly journals Rac signaling in osteoblastic cells is required for normal bone development but is dispensable for hematopoietic development

Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 736-744 ◽  
Author(s):  
Steven W. Lane ◽  
Serena De Vita ◽  
Kylie A. Alexander ◽  
Ruchan Karaman ◽  
Michael D. Milsom ◽  
...  

Abstract Hematopoietic stem cells (HSCs) interact with osteoblastic, stromal, and vascular components of the BM hematopoietic microenvironment (HM) that are required for the maintenance of long-term self-renewal in vivo. Osteoblasts have been reported to be a critical cell type making up the HSC niche in vivo. Rac1 GTPase has been implicated in adhesion, spreading, and differentiation of osteoblast cell lines and is critical for HSC engraftment and retention. Recent data suggest a differential role of GTPases in endosteal/osteoblastic versus perivascular niche function. However, whether Rac signaling pathways are also necessary in the cell-extrinsic control of HSC function within the HM has not been examined. In the present study, genetic and inducible models of Rac deletion were used to demonstrate that Rac depletion causes impaired proliferation and induction of apoptosis in the OP9 cell line and in primary BM stromal cells. Deletion of Rac proteins caused reduced trabecular and cortical long bone growth in vivo. Surprisingly, HSC function and maintenance of hematopoiesis in vivo was preserved despite these substantial cell-extrinsic changes. These data have implications for therapeutic strategies to target Rac signaling in HSC mobilization and in the treatment of leukemia and provide clarification to our evolving concepts of HSC-HM interactions.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1397-1397
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Valérie Jalbert ◽  
Elisabeth Cramer Bordé ◽  
...  

Abstract TGF-β1 is a cytokine with pleiotropic effects. It has been considered that TGF-β1plays a major role on hematopoietic stem cells (HSC) based on in vitro experiment. Achieving in vivo experiments proved to be difficult because constitutive TGF-β1 knock-out (KO) in mice leads to lethality during the first 4 weeks of life from a wasting syndrome related to tissue infiltration by activated T cells and macrophages. For this reason, hematopoiesis of TGF-β1−/− mice has not been studied in details. In contrast the role of TGF-β1 has been recently extensively studied in conditional TGF-β type I receptor (TβRI) KO mice. No clear effect was observed on HSC functions, suggesting that TGF-β1 was not a key physiological regulator of hematopoiesis in the adult. However, these experiments have some limitations. They do not exclude a putative role for TGF-β1 during fetal hematopoiesis and they do not specifically address the role of TGF-β1 on hematopoiesis because KO of TGF-β receptor leads to signaling arrest for all TGF-βs. In addition, other receptors may be involved in TGF-β1 signaling. For these reasons, we have investigated the hematopoiesis of constitutive TGF-β1 KO mice with a mixed Sv129 × CF-1 genetic background allowing the birth of a high proportion of homozygotes. In 2 week-old neonate mice, we have shown a decrease of bone marrow (BM) and spleen progenitors and a decrease of immature progenitors colony forming unit of the spleen (CFU-s). Moreover this was associated with a loss in reconstitutive activity of TGF-β1−/− HSC from BM. However, although asymptomatic, these mice had an excess of activated lymphocytes and an augmentation of Sca-1 antigen on hematopoietic cells suggesting an excess of γ-interferon release. Thus we studied hematopoiesis of 7 to 10 days-old neonate mice, before phenotypic modification and inflammatory cytokine release. Similar results were observed with a decrease in the number of progenitors and in the proliferation of TGF-β1−/− BM cells along with an increased differentiation but without an augmentation in apoptosis. Moreoever, a loss of long term reconstitutive capacity of BM Lineage negative (Lin−) TGF-β1−/− cells along with a diminution of homing of TGF-β1−/− progenitors was found. These results demonstrate that TGF-β1 may play a major role on the HSC/Progenitor compartment in vivo and that this defect does not seem to be linked to the immune disease. To completely overpass the risk of the inflammatory syndrome, we analyzed hematopoiesis of fetal liver (FL) of TGF-β1−/− mice and still found a decrease in progenitors, a profound defect in the proliferative capacities, in long term reconstitutive activity and homing potential of primitive FL hematopoietic cells. Our results demonstrate that TGF-β1 plays an important role during hematopoietic embryonic development. Altogether these findings suggest that TGF-β1 is a potent positive regulator for the in vivo homeostasis of the HSC compartment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 614-614 ◽  
Author(s):  
Haiming Xu ◽  
Hartmut Geiger ◽  
Kathleen Szczur ◽  
Deidra Deira ◽  
Yi Zheng ◽  
...  

Abstract Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow (BM), self-renewal, proliferation and differentiation to mature blood cells. However, the molecular regulation of HSC engraftment is still poorly defined. Small Rho GTPases are critical regulator of cell migration, proliferation and differentiation in multiple cell types. While their role in HSC functions has begun to be understood, the role of their regulator in vivo has been understudied. P190-B GTPase Activating Protein (GAP), a negative regulator of Rho activity, has been implicated in regulating cell size and adipogenesis-myogenesis cell fate determination during fetal development (Sordella, Dev Cell, 2002; Cell 2003). Here, we investigated the role of p190-B in HSC/P engraftment. Since mice lacking p190-B die before birth, serial competitive repopulation assay was performed using fetal liver (FL) tissues from day E14.5 WT and p190-B−/− embryos. WT and p190-B−/− FL cells exhibited similar levels of engraftment in primary recipients. However, the level of contribution of p190-B−/− cells to peripheral blood and bone marrow was maintained between the primary and secondary recipients and still easily detectable in tertiary recipients, while the level of contribution of FL WT cells dramatically decreased with successive serial transplantion and was barely detectable in tertiary recipients. The contribution to T cell, B cell and myeloid cell reconstitution was similar between the genotypes. A pool of HSC was maintained in serially transplanted p190-B−/− animals, since LinnegScaposKitpos (LSK) cells were still present in the BM of p190-B−/− secondary engrafted mice while this population disappeared in WT controls. Importantly, this enhanced long term engraftment was due to a difference in the functional capacity of p190-B−/− HSC compared to WT HSC since highly enriched p190-B−/− HSC (LSK) demonstrated similar enhanced serial transplantation potential. Because previous studies have suggested that the loss of long term function of HSC during serial transplantation can depend, at least in part, on the upregulation of the cyclin dependent kinase inhibitor p16Ink4a (Ito et al, Nat Med 2006), the expression of p16Ink4a was examined during serial transplantation. While expression of p16Ink4a increased in WT HSC in primary and secondary recipients, p16Ink4a remained low in p190-B−/− HSC, which indicated that p190-B-deficiency represses the upregulation of p16Ink4a in HSC in primary and secondary transplant recipients. This provides a possible mechanism of p190-B-mediated HSC functions. We next examined whether p190-B-deficiency may preserve the repopulating capacity of HSC/P during ex vivo cytokine-induced culture. While freshly isolated LSK cells from WT and p190-B−/− mice exhibited comparable intrinsic clonogenic capacity, the frequency of colony-forming unit after 7 days in culture was 2 fold-higher in p190-B−/− compared with WT cultures, resulting in a net CFU expansion. Furthermore, competitive repopulation assays showed significantly higher repopulating activity in mice that received p190-B−/− cultured cells compared with WT cells equivalent to a 4.4-fold increase in the estimated frequency of repopulating units. Interestingly, p190-deficiency did not alter cell cycling rate or survival both in vivo and in vitro. Therefore, p190-B-deficiency maintains key HSC functions either in vivo or in ex vivo culture without altering cycling rate and survival of these cells. These findings define p190-B as a critical regulator of HSC functions regulating self renewal activity while maintaining a balance between proliferation and differentiation.


Blood ◽  
2012 ◽  
Vol 119 (8) ◽  
pp. 1856-1860 ◽  
Author(s):  
Vid Leko ◽  
Barbara Varnum-Finney ◽  
Hongzhe Li ◽  
Yansong Gu ◽  
David Flowers ◽  
...  

Abstract SIRT1 is an NAD+-dependent histone deacetylase implicated in the establishment of the primitive hematopoietic system during mouse embryonic development. However, investigation of the role of SIRT1 in adult hematopoiesis has been complicated by the high perinatal mortality of SIRT1-deficient mice (SIRT1−/−). We performed a comprehensive in vivo study of the hematopoietic stem cell (HSC) compartment in adult SIRT1−/− mice and show that, apart from anemia and leukocytosis in older mice, the production of mature blood cells, lineage distribution within hematopoietic organs, and frequencies of the most primitive HSC populations are comparable to those of wild-type littermate controls. Furthermore, we show that SIRT1-deficient BM cells confer stable long-term reconstitution in competitive repopulation and serial transplantation experiments. The results of the present study rule out an essential physiologic role for cell-autonomous SIRT1 signaling in the maintenance of the adult HSC compartment in mice.


2021 ◽  
Author(s):  
Cameron J Young ◽  
Melissa Caffrey ◽  
Christopher Janton ◽  
Tatsuya Kobayashi

The chondrocyte specific miR-140 miRNAs are necessary for normal endochondral bone growth in mice. miR-140 deficiency causes dwarfism and craniofacial deformity. However, the physiologically important targets of miR-140 miRNAs are still unclear. The miR-140 gene (Mir140) encodes three chondrocyte-specific microRNAs, miR-140-5p, derived from the 5′ strand of primary miR-140, and miR140-3p.1 and -3p.2, derived from the 3′ strand of primary miR-140. miR-140-3p miRNAs are ten times more abundant than miR-140-5p likely due to the non-preferential loading of miR-140-5p to Argonaute proteins. To differentiate the role of miR-140-5p and -3p miRNAs in endochondral bone development, two distinct mouse models, miR140-C>T, in which the first nucleotide of miR-140-5p was altered from cytosine to uridine, and miR140-CG, where the first two nucleotides of miR-140-3p were changed to cytosine and guanine, were created. These changes are expected to alter Argonaute protein loading preference of -5p and -3p to increase -5p loading and decrease -3p loading without changing the function of miR140-5p. These models presented a mild delay in epiphyseal development with delayed chondrocyte maturation. Using RNA-sequencing analysis of the two models, direct targets of miR140-5p, including Wnt11, were identified. Disruption of the predicted miR140-5p binding site in the 3′ untranslated region of Wnt11 was shown to increase Wnt11 mRNA expression and caused a modest acceleration of epiphyseal development. These results show that the relative abundance of miRNA-5p and -3p can be altered by changing the first nucleotide of miRNAs in vivo, and this method can be useful to identify physiologically important miRNA targets.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 396-396
Author(s):  
Stephane Barakat ◽  
Julie Lambert ◽  
Guy Sauvageau ◽  
Trang Hoang

Abstract Abstract 396 Hematopoietic stem cells that provide short term reconstitution (ST-HSCs) as well as hematopoietic progenitors expand from a small population of long term hematopoietic stem cells (LT-HSCs) that are mostly dormant cells. The mechanisms underlying this expansion remain to be clarified. SCL (stem cell leukemia), is a bHLH transcription factor that controls HSC quiescence and long term competence. Using a proteomics approach to identify components of the SCL complex in erythroid cells, we and others recently showed that the ETO2 co-repressor limits the activity of the SCL complex via direct interaction with the E2A transcription factor. ETO2/CBF2T3 is highly homologous to ETO/CBFA2T1 and both are translocation partners for AML1. We took several approaches to identify ETO2 function in HSCs. We initially found by Q-PCR that ETO2 is highly expressed in populations of cells enriched in short-term HSC (CD34+Flt3-Kit+Sca+Lin-) and lympho-myeloid progenitors (CD34+Flt3+Kit+Sca+Lin-) and at lower levels in LT-HSCs (CD34-Kit+Sca+Lin- or CD150+CD48-Kit+Sca+Lin-). Next, the role of ETO2 was studied by overexpression or downregulation combined with transplantation in mice. Ectopic ETO2 expression induces a 100 fold expansion of LT-HSCs in vivo in transplanted mice associated with differentiation blockade in all lineages, suggesting that ETO2 overexpression overcomes the mechanisms that limit HSC expansion in vivo. We are currently testing the role of the NHR1 domain of ETO2 in this expansion. Conversely, shRNAs directed against ETO2 knock down ET02 levels in Kit+Sca+Lin- cells, causing a ten-fold decrease in this population after transplantation, associated with reduced short-term reconstitution in mice. Finally, proliferation assays using Hoechst and CFSE indicate that ETO2 downregulation affects cell division (CFSE) and leads to an accumulation of Kit+Sca+Lin-cells in G0/G1 state (Hoescht). In conclusion, we show that ETO2 is highly expressed in ST-HSCs and lymphoid progenitors, and controls their expansion by regulating cell cycle entry at the G1-S checkpoint. In addition, ETO2 overexpression converts the self-renewal of maintenance into self-renewal of expansion in LT-HSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 585-585
Author(s):  
Owen J. Tamplin ◽  
Ellen M. Durand ◽  
Logan A. Carr ◽  
Pulin Li ◽  
Leonard I. Zon

Abstract Hematopoietic stem cells (HSC) reside in the bone marrow niche and sustain the production of blood throughout life. The entire pool of these rare and important cells is generated during a brief window of embryonic development. HSC are produced by the hemogenic endothelium of the dorsal aorta, migrate to and expand in the fetal liver, and then migrate again to seed the bone marrow. The zebrafish is a highly conserved and well-established model for HSC development. Similar to mammals, HSC emerge from the dorsal aorta, but then colonize a vascular plexus in the tail of the embryo—the caudal hematopoietic tissue (CHT). It is difficult to directly observe the interactions between an endogenous HSC and its niche, so we have developed the CHT as a model for HSC-niche interactions. To track HSC in vivo we have generated a transgenic reporter using the previously described mouse Runx1 +23 kb intronic enhancer. The purity of the stem cell pool marked by this reporter was determined. Using adult-to-adult limiting dilution transplantation with as few as one Runx1+23 positive cell, we have estimated the HSC purity to be approximately 1/35 (without immune matching), or similar to Kit+Sca1+Lin- (KSL) in mouse. This is the most pure stem cell population defined in the zebrafish system. Using embryo-to-embryo transplantation, a technique that is unique to zebrafish, we sorted Runx1+23 positive cells from one group of embryos and transplanted them to another by injection directly into circulation. Embryos are then grown to adulthood and marrow is tested for long-term engraftment between 3 and 5 months. This transplantation technique precedes formation of the thymus, thereby removing any chance of immune rejection. Highly stringent dilution of HSC in our embryo-to-embryo transplants has estimated a stem cell purity of one in two cells. Next, we applied our highly specific reporter to visualize HSC migration to the CHT niche. After arrival of the HSC, we have described 5 distinct steps during colonization: 1) adherence; 2) extravasation; 3) abluminal migration; 4) endothelial niche formation (“cuddling”); and 5) cell fate decisions. Live imaging analysis of HSC together with endothelial and stromal transgenic reporters has allowed us to quantify the relationship between different cell types within the CHT. For example, we observe preferential localization of HSC in close proximity to cxcl12a positive stromal cells. Lastly, we have sought to identify the molecular mechanisms involved in interactions between HSC and their niche. A chemical genetic screen identified the natural product lycorine as a small molecule that increases hematopoiesis in the CHT and promotes HSC-endothelial cell interactions. Combined chemical treatment and live imaging revealed that lycorine significantly increased the residence time of HSC in the niche. To test if treatment during the window of CHT colonization (2-3 days post fertilization) had long-term effects on HSC and the stem cell pool, the compound was washed off at 3 days and the Runx1+23 positive population was quantified by FACS. At 7 days post fertilization, after colonization of the marrow, there was a sustained and significant increase in Runx1+23 positive HSC. Strikingly, after 3 months, when treated embryos were raised to adulthood, we discovered that the increased HSC-endothelial cell interactions we observed in the CHT niche had in fact had an impact on the number of HSC in the adult. Our studies establish that the Runx1+23 transgenic is a highly specific reporter of HSC both in the embryo and adult, and that we can use this reporter for in vivo observation of an endogenous HSC niche. Furthermore, we show that the size of the adult stem cell pool can be altered by a transient signal during development. Disclosures: Tamplin: Boston Children's Hospital: Patents & Royalties. Zon:FATE Therapeutics, Inc: Consultancy, Equity Ownership, Founder Other, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties; Stemgent, Inc: Consultancy, Membership on an entity’s Board of Directors or advisory committees, Stocks, Stocks Other; Scholar Rock: Consultancy, Equity Ownership, Founder, Founder Other, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties.


2000 ◽  
Vol 191 (2) ◽  
pp. 253-264 ◽  
Author(s):  
Jos Domen ◽  
Samuel H. Cheshier ◽  
Irving L. Weissman

Hematopoietic stem cells (HSC) give rise to cells of all hematopoietic lineages, many of which are short lived. HSC face developmental choices: self-renewal (remain an HSC with long-term multilineage repopulating potential) or differentiation (become an HSC with short-term multilineage repopulating potential and, eventually, a mature cell). There is a large overcapacity of differentiating hematopoietic cells and apoptosis plays a role in regulating their numbers. It is not clear whether apoptosis plays a direct role in regulating HSC numbers. To address this, we have employed a transgenic mouse model that overexpresses BCL-2 in all hematopoietic cells, including HSC: H2K-BCL-2. Cells from H2K-BCL-2 mice have been shown to be protected against a wide variety of apoptosis-inducing challenges. This block in apoptosis affects their HSC compartment. H2K-BCL-2–transgenic mice have increased numbers of HSC in bone marrow (2.4× wild type), but fewer of these cells are in the S/G2/M phases of the cell cycle (0.6× wild type). Their HSC have an increased plating efficiency in vitro, engraft at least as well as wild-type HSC in vivo, and have an advantage following competitive reconstitution with wild-type HSC.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2998-3006 ◽  
Author(s):  
Pawel Wlodarski ◽  
Mariusz Wasik ◽  
Mariusz Z. Ratajczak ◽  
Cinzia Sevignani ◽  
Grazyna Hoser ◽  
...  

Prompt reconstitution of hematopoiesis after cytoreductive therapy is essential for patient recovery and may have a positive impact on long-term prognosis. We examined the role of the p53 tumor suppressor gene in hematopoietic recovery in vivo after treatment with the cytotoxic drug 5-fluorouracil (5-FU). We used p53 knock-out (p53−/−) and wild-type (p53+/+) mice injected with 5-FU as the experimental model. Analysis of the repopulation ability and clonogenic activity of hematopoietic stem cells (HSCs) and their lineage-committed descendants showed a greater number of HSCs responsible for reconstitution of lethally irradiated recipients in p53−/− bone marrow cells (BMCs) recovering after 5-FU treatment than in the corresponding p53+/+ BMCs. In post–5-FU recovering BMCs, the percentage of HSC-enriched Lin− Sca-1+c-Kit+ cells was about threefold higher in p53−/− than in p53+/+ cells. Although the percentage of the most primitive HSCs (Lin− Sca-1+ c-Kit+CD34low/−) did not depend on p53, the percentage of multipotential HSCs and committed progenitors (Lin−Sca-1+ c-Kit+ CD34high/+) was almost fourfold higher in post–5-FU recovering p53−/− BMCs than in their p53+/+ counterparts. The pool of HSCs from 5-FU–treated p53−/− BMCs was exhausted more slowly than that from the p53+/+ population as shown in vivo using pre–spleen colony-forming unit (CFU-S) assay and in vitro using long-term culture-initiating cells (LTC-ICs) and methylcellulose replating assays. Clonogenic activity of various lineage-specific descendants was significantly higher in post–5-FU regenerating p53−/− BMCs than in p53+/+ BMCs, probably because of their increased sensitivity to growth factors. Despite all these changes and the dramatic difference in sensitivity of p53−/− and p53+/+ BMCs to 5-FU–induced apoptosis, lineage commitment and differentiation of hematopoietic progenitors appeared to be independent of p53 status. These studies suggest that suppression of p53 function facilitates hematopoietic reconstitution after cytoreductive therapy by: (1) delaying the exhaustion of the most primitive HSC pool, (2) stimulating the production of multipotential HSCs, (3) increasing the sensitivity of hematopoietic cells to growth factors, and (4) decreasing the sensitivity to apoptosis.


2021 ◽  
Author(s):  
Yasmine Even ◽  
Lin Yi ◽  
Chih-Kai Chang ◽  
Fabio M Rossi

Hematopoietic stem cells (HSCs) in the bone marrow (BM) reside in HSC niches ensuring their maintenance. The HSC niche is made up of perivascular and trabecular cells including osteoblasts whose role on HSCs remains to be clearly defined. Increased numbers of osteoblasts have been observed in the CL2 transgenic mouse expressing a constitutively activated form of the parathyroid hormone (PTH)/PTH-related peptide receptor. This mouse model mimicking PTH anabolic effect has also been described to exhibit increased numbers of the BM stem/progenitor population. Furthermore, PTH is known to induce BM stem/progenitor cell migration into blood circulation. However PTH role on long-term repopulating HSCs (LT-HSCs) is incompletely known. Here we show that CL2 BM contains a regular proportion of LT-HSCs, suggesting that osteoblasts may not be a determinant of LT-HSC numbers but act mainly on more mature progenitors. We further show increased LT-HSC migration in CL2 mice correlated with higher granulocyte colony-stimulating factor (G-CSF) serum levels, supporting the idea that PTH can enhance the migration of LT-HSCs. Finally, we found a defect in the ability of CL2 BM HSCs to reconstitute irradiated BM suggesting that PTH activation of osteoblasts negatively influences abilities of HSC population to engraft and reconstitute irradiated BM. In summary, our study highlights new insights into the role of the PTH-dependent activation of osteoblasts on LT-HSC migration and their BM repopulation abilities. Our findings will be useful to improve treatments on hematological disorders, especially therapies involving HSC harvest and transplantation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 547-547
Author(s):  
Stefania Lymperi ◽  
Nikki Horwood ◽  
Francesco Dazzi

Abstract Hematopoietic stem cell (HSC) function and number are tightly regulated in a specific microenvironment - the HSC niche - constituted of several cell types. Amongst them, osteoblasts have a prominent role since their increment is associated with an expansion of HSC. However, we demonstrated that an overall increase in osteoblasts does not necessarily promote hematopoiesis (Lymperi et al, Blood 2008 111:1173-81). We hypothesised that osteoclast mediated bone resorption, a component of the bone remodelling process which regulates osteoblast formation, takes active part in the HSC niche. To address this question we inhibited osteoclast function with the bone catabolic agents bisphosphonates. In vivo administration of bisphosphonates to C57BL/6 mice altered the architecture of the trabecular bone as defined by micro-CT and histomorphometric analysis. Treated mice exhibited increased bone volume and trabecular number and reduced trabecular separation and trabecular pattern factor compared to the untreated controls. This was accompanied to a decrease in the proportion and absolute number of HSC in the bone marrow (BM) as assessed by both the immunophenotypic enumeration of Lin-Sca1+c-kit+Flk2-HSC and the long-term culture- initiating cell (LTC-IC) assay. The number of the colony forming unit-cells (CFU-C) in the BM of bisphosphonate treated mice was increased, while more Lin-Sca1+c-kit+ enriched cells were found in the S/M phase of the cell cycle. These results indicate that, in osteoclast-impaired mice a proportion of HSC enters the cell cycle changing the balance in favour of hematopoietic progenitors. The ability of BM cells from bisphosphonate treated mice to engraft and reconstitute the hematopoietic system was tested in a competitive transplantation assay, whereby BM cells from treated and untreated mice were transplanted into syngeneic irradiated recipients. The long-term engraftment of treated BM cells was inferior to the one of controls, indicating a decrease in HSC numbers. Furthermore, recipient mice treated with bisphosphonates prior to conditioning and BM transplantation experienced a delayed hematopoietic recovery as compared to untreated recipients. Since it has been shown that parathyroid hormone (PTH) administration increases the number of HSC by stimulating osteoblast numbers, mice receiving micro-pump delivered PTH were also injected with bisphosphonates. We observed that the administration of bisphosphonates abolished the ability of PTH to increase the primitive HSC pool size as measured by FACS analysis of the Lin-Sca1+c-kit+Flk2- BM cells and their capacity to engraft and reconstitute irradiated recipients. Our findings demonstrate that the osteoclast function is fundamental for the HSC niche, possibly by promoting the recruitment of osteoblasts with HSC supporting capacity.


Sign in / Sign up

Export Citation Format

Share Document