Event-Free Survival Is a Surrogate for Overall Survival in Patients Treated for Acute Myeloid Leukemia

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3744-3744 ◽  
Author(s):  
Richard F. Schlenk ◽  
Hartmut Döhner ◽  
Konstanze Döhner ◽  
Arnold Ganser ◽  
Michael Heuser ◽  
...  

Abstract Purpose: We evaluated whether event-free survival (EFS) can be used as a surrogate for overall survival (OS) in patients treated for acute myeloid leukemia. Material: We carried out a meta-analysis of individual patient data from four randomized clinical trials carried out under the auspices of the German-Austrian Acute Myeloid Leukemia Study Group (AMLSG): AMLHD 98B (Schlenk et al. Leukemia 2004 18:1798-803; n=254), AMLSG 06-04 (NCT00151255, n=189), AMLSG 07-04 (NCT00151242, n=1,100) and AMLSG 12-09 (NCT01180322, n=268). Some of these trials addressed multiple therapeutic questions, which resulted in a total of 7 independent treatment comparisons. Methods: A two-level modelling approach was used to estimate the association between EFS and OS, and between the treatment effects on EFS and on OS. At the individual level, a copula was fitted to model the joint distribution of EFS and OS, and Spearman's rank correlation coefficient (rho) was used to quantify the association between the endpoints. At the trial-level, a linear regression was fitted through the estimated treatment effects (Weibull-model-based log hazard ratios) on EFS and OS, taking into account the estimation error. The coefficient of determination (R²) was used to quantify the association between the treatment effects. The surrogate threshold effect (STE) was estimated as the treatment effect on EFS that would predict a significant treatment effect on OS. Results: A total of n=1,811 patients were included in the analysis. Spearman's correlation coefficient was equal to 0.76 (standard error, SE, 0.015). The coefficient of determination (R²) of the linear regression between log hazard ratios on EFS and on OS was equal to 0.97 (SE 0.13). The intercept of the regression line was equal to -0.04 (SE 0.04) and the slope was equal to 0.80 (SE 0.21). The surrogate threshold effect was equal to 0.90. Using an alternative method of estimation of treatment effects, marginal proportional hazards models for EFS and OS, the R² was equal to 0.98 (SE 0.21), the intercept of the regression line was equal to -0.02 (SE 0.05), the slope was equal to 0.82 (SE 0.28), and the surrogate threshold effect was equal to 0.89. Further results for different subsets of patients, for example, those with activating FLT3 mutations, will be presented at the meeting. Interpretation: In this population of intensively-treated AML patients, there was a tight association between the treatment effect on EFS and OS, suggesting that the former can be used as a surrogate for the latter in clinical trials assessing the efficacy of new treatments. The surrogate threshold effect of about 0.90 and the regression analysis suggest that a reduction of at least 10% in the risk of an event would reliably predict a reduction of approximately 8% in the risk of death. Disclosures Schlenk: Celgene: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Teva: Honoraria, Research Funding; AROG: Honoraria, Research Funding; Amgen: Research Funding; Böhringer Ingelheim: Honoraria; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. Buyse:IDDI: Employment; Novartis: Research Funding. Burzykowski:IDDI: Employment; Novartis: Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2663-2663
Author(s):  
Satoshi Kitazawa ◽  
Yukiko Ishii ◽  
Keiko Makita-Suzuki ◽  
Koichi Saito ◽  
Kensuke Takayanagi ◽  
...  

Cancer initiating cells (CIC) are suggested to be responsible for drug resistance and cancer relapse that are associated with poor prognosis. Therefore, drugs effective for CIC could fulfill an unmet clinical need. We performed a drug screen with chemical libraries to find out new compounds which specifically eradicated CIC established in the previous report (Yamashita et al., Cancer Research, 2015). We obtained compounds with a carboxylic acid skeleton as hit compounds. Interestingly, FF1215T, one of the hit compounds, was shown to inhibit growths of CIC by decreasing intracellular pyrimidine nucleotide levels. Finally, we identified dihydroorotate dehydrogenase (DHODH), which was essential for de novo pyrimidine synthesis as the target of the hit compounds in a ligand fishing assay. FF1215T inhibited DHODH enzymatic activity with the 50% inhibitory concentration value of 9 nM, which showed greater potency than well-known DHODH inhibitors brequinar (12 nM), teriflunomide (262 nM), and vidofludimus (141 nM). Growing evidence suggests that DHODH is considered to be a promising target to overcome a differentiation blockade of acute myeloid leukemia (AML) cells (Sykes et al., Cell, 2016).Therefore, we explored the effect of FF1215T on AML growth and differentiation. FF1215T demonstrated growth inhibitory effect in multiple human AML cell lines such as U937, MOLM13, HL60, and MV4-11 with the 50% growth inhibition values of 90-170 nM. FF1215T decreased intracellular pyrimidine nucleotide levels, induced DNA damage marker γ-H2AX possibly due to the replication stress, and finally led to apoptosis in HL60 cells. Cell cycle analysis revealed that FF1215T treatment arrested HL60 and THP1 cells at S phase and increased sub-G1 population in these cells. In addition, our DHODH inhibitors induced upregulation of cell-surface CD11b and CD86, which are monocyte and macrophage differentiation markers, morphological changes, and phagocytic activities in several AML cells, indicating differentiation of AML cells toward monocyte and macrophage by DHODH inhibition. FF1215T also depleted UDP-GlcNAc, a substrate for Protein O-GlcNAcylation, and diminished global O-GlcNAcylation and O-GlcNAcylated protein expressions such as c-Myc, SOX2, and OCT4, which play important roles in maintenance and self renewal of stem cells. We also found that our DHODH inhibitors induced CD11b and CD86, and increased the ratio of macrophage-like cells in primary patient-derived AML cells and these effects were rescued by uridine supplementation (Fig). Inhibitions of colony formations of primary AML cells were also shown after 14 days of FF1215T treatment. In exploring the value of DHODH inhibitors in the clinic, we identified that our DHODH inhibitors worked to overcome the resistance of standard therapy Ara-C. Our DHODH inhibitors were effective against Ara-C-resistant models of HL60 cells as well as HL60 parental cells. Notably, our DHODH inhibitors synergistically inhibited growths of Ara-C-resistant THP1 cells and enhanced CD11b upregulation of THP1 cells when combined with Ara-C by activating conversion of Ara-C to its active form Ara-CTP. Next, we optimized the hit compounds and identified an orally available DHODH inhibitor FF14984T that achieved high and prolonged plasma concentrations in vivo. Oral administration of 10 and 30 mg/kg FF14984T once daily for 10 days exhibited significant anti-tumor effects in mice xenografted with HL60 cells. These treatments showed strong reduction of CTP in tumor and induction of DHO in tumor and plasma. When 30 mg/kg FF14984T was orally administrated to orthotropic MOLM13-xenografted mice once daily for 12 days, hCD45+ cells proportions in bone marrow were decreased whereas hCD11bhigh/hCD45+ ratio increased, indicating that FF14984T induced AML differentiation in vivo. Finally, oral administration of 30 mg/kg FF14984T once daily significantly prolonged survival of mice in U937 orthotropic models. Taken together, we developed a novel potent DHODH inhibitor FF14984T that induced cellular differentiation and anti-leukemic effects on cell lines and primary AML cells. FF14984T is possibly a promising therapeutic option for Ara-C-resistant AML patients that can also benefit from the combination therapy of FF14984T and Ara-C. Identifying the precise mechanism of AML differentiation by DHODH inhibitor and its effects on CIC are currently ongoing. Disclosures Kitazawa: FUJIFILM Corporation: Employment. Ishii:FUJIFILM Corporation: Employment. Makita-Suzuki:FUJIFILM Corporation: Employment. Saito:FUJIFILM Corporation: Employment. Takayanagi:FUJIFILM Corporation: Employment. Sugihara:FUJIFILM Corporation: Employment. Matsuda:FUJIFILM Corporation: Employment. Yamakawa:FUJIFILM Corporation: Employment. Tsutsui:FUJIFILM Corporation: Employment. Tanaka:FUJIFILM Corporation: Employment. Hatta:FUJIFILM Corporation: Research Funding. Natsume:FUJIFILM Corporation: Research Funding. Kondo:FUJIFILM Corporation: Research Funding. Hagiwara:FUJIFILM Coporation: Employment. Kiyoi:FUJIFILM Corporation: Research Funding; Astellas Pharma Inc.: Honoraria, Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; Bristol-Myers Squibb: Research Funding; Daiichi Sankyo Co., Ltd: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Otsuka Pharmaceutical Co.,Ltd.: Research Funding; Eisai Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Pfizer Japan Inc.: Honoraria; Perseus Proteomics Inc.: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2552-2552
Author(s):  
Laury Poulain ◽  
Adrien Grenier ◽  
Johanna Mondesir ◽  
Arnaud Jacquel ◽  
Claudie Bosc ◽  
...  

Acute myeloid leukemia (AML) is a myeloid progenitor-derived neoplasm of poor prognosis, particularly among the elderly, in whom age and comorbidities preclude the use of intensive therapies. Novel therapeutic approaches for AML are therefore critically needed. Adenosine monophosphate (AMP) activated protein kinase (AMPK) is a pleiotropic serine/threonine kinase promoting catabolism that represses anabolism and enhances autophagy in response to stress1. AMPK heterotrimers comprise catalytic α- and regulatory β- and γ-subunits, the latter harboring binding sites for AMP. Targets of AMPK include a host of metabolic pathway enzymes mediating carbohydrate, lipid and protein synthesis and metabolism. Accumulating evidence implicates AMPK in cancer biology, primarily as a tumor suppressor, although minimal AMPK activity may also be required for cancer cell growth under stress conditions2,3. Pharmacological activation of AMPK thus represents an attractive new strategy for targeting AML. We previously used the selective small molecule AMPK activator GSK621 to show that AMPK activation induces cytotoxicity in AML but not in normal hematopoietic cells, contingent on concomitant activation of the mammalian target of rapamycin complex 1 (mTORC1)4. However, the precise mechanisms of AMPK-induced AML cytotoxicity have remained unclear. We integrated gene expression profiling and bioinformatics proteomic analysis to identify the serine/threonine kinase PERK - one of the key effectors of the endoplasmic reticulum stress response - as a potential novel target of AMPK. We showed that PERK was directly phosphorylated by AMPK on at least two conserved residues (serine 439 and threonine 680) and that AMPK activators elicited a PERK/eIF2A signaling cascade independent of the endoplasmic reticulum stress response in AML cells. CRISPR/Cas9 depletion and complementation assays illuminated a critical role for PERK in apoptotic cell death induced by pharmacological AMPK activation. Indeed, GSK621 induced mitochondrial membrane depolarization and apoptosis in AML cells, an effect that was mitigated when cells were depleted of PERK or expressed PERK with a loss of function AMPK phosphorylation site mutation. We identified the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) as a downstream target of the AMPK/PERK pathway, as its expression was enhanced in PERK knockdown AML cells. Moreover, selective pharmacologic activation of ALDH2 by the small molecule ALDA-1 recapitulated the protective effects of PERK depletion in the face of pharmacological AMPK activation. Corroborating the impact of the AMPK/PERK axis on mitochondrial apoptotic function, BH3 profiling showed marked Bcl-2 dependency in AML cells treated with GSK621. This dependency was abrogated in PERK-depleted cells, suggesting a role for PERK in mitochondrial priming to cell death. In vitro drug combination studies further demonstrated synergy between the clinical grade Bcl-2 inhibitor venetoclax (ABT-199) and each of four AMPK activators (GSK621, MK-8722, PF-06409577 and compound 991) in multiple AML cell lines. Finally, the addition of GSK621 to venetoclax enhanced anti-leukemic activity in primary AML patient samples ex vivo and in humanized mouse models in vivo. These findings together clarify the mechanisms of cytotoxicity induced by AMPK activation and suggest that combining pharmacologic AMPK activators with venetoclax may hold therapeutic promise in AML. References 1. Lin S-C, Hardie DG. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metabolism. 2018;27(2):299-313. 2. Hardie DG. Molecular Pathways: Is AMPK a Friend or a Foe in Cancer? Clinical Cancer Research. 2015;21(17):3836-3840. 3. Jeon S-M, Hay N. The double-edged sword of AMPK signaling in cancer and its therapeutic implications. Arch. Pharm. Res. 2015;38(3):346-357. 4. Sujobert P, Poulain L, Paubelle E, et al. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia. Cell Rep. 2015;11(9):1446-1457. Figure Disclosures Tamburini: Novartis pharmaceutical: Research Funding; Incyte: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2692-2692
Author(s):  
Xueyan Chen ◽  
Megan Othus ◽  
Brent L Wood ◽  
Roland B. Walter ◽  
Pamela S. Becker ◽  
...  

Introduction: The World Health Organization (WHO) diagnoses acute myeloid leukemia (AML) if ≥20% myeloid blasts are present in peripheral blood or bone marrow. Consequently a patient with even 19% blasts is often ineligible for an "AML study". A less arbitrary means to define "AML" and myelodysplastic syndromes ("MDS") emphasizes biologic features. Here, focusing on patients with WHO-defined MDS with excess (5-19%) blasts (MDS-EB) or AML with myelodysplasia-related changes (AML-MRC) or therapy-related (t-AML) (WHO defined secondary AML), we compared morphologic blast percentage (MBP) with the frequency of mutations in genes belonging to different functional groups, and with the variant allele frequency (VAF) for individually mutated genes. Methods: 328 adults with WHO-defined AML (de novo and secondary; n=149) or MDS (n=179) and with mutational analysis by next-generation sequencing (NGS) performed at the University of Washington Hematopathology Laboratory between 2015-2017 were included. Of these, 86 had MDS-EB and 49 had secondary AML. Mutational analysis was performed using a customized, amplicon-based assay, TruSeq Custom Amplicon (Illumina, San Diego, CA). Custom oligonucleotide probes targeted specific mutational hotspots in ASXL1, CBL, CEBPA, CSF3R, EZH2, FBXW7, FGFR1, FLT3, GATA1, GATA2, HRAS, IDH1, IDH2, JAK2, KIT, KMT2A, KRAS, MAP2K1, MPL, NOTCH1, NPM1, NRAS, PDGFRA, PHF6, PTEN, RB1, RUNX1, SF3B1, SRSF2, STAG2, STAT3, TET2, TP53, U2AF1, WT1, and ZRSR2. VAF ≥5% was required to identify point mutations. Spearman's correlation coefficient was used to examine the relation between VAF of individually mutated genes and MBP. The Mann Whitney test served to compare the distribution of VAF in AML (≥20% blasts) vs. MDS (<20% blasts), before and after exclusion of subgroups as described below. Fisher's exact test was used to compare incidence of mutations. Results: 96% of cases had ≥one mutation in the 36 genes tested using NGS. Considering all 328 patients, mutations in tumor suppressor and cohesin complex genes were similarly frequent in MDS and AML, whereas spliceosomal genes, in particular SF3B1 and SRSF2, were more frequently mutated in MDS than in AML (46% vs. 26%, p<0.001). Mutations in epigenetic modifiers were more common in AML than MDS (54% vs. 42%, p= 0.035) as were transcription factor mutations (52% vs. 28%, p<0.001). However comparisons limited to MDS-EB vs. AML-MRC/t-AML, indicated the differences observed when comparing all MDS and all AML were less apparent, both statistically and more perhaps importantly with respect to observed frequencies. For example, spliceosomal gene mutations were found in 35% in MDS-EB and 27% in AML-MRC/t-AML (p=0.34) vs. 46% and 26% in all MDS and all AML. NPM1 mutations were detected in only 8% of AML-MRC/t-AML vs. 3% in MDS-EB but 29% for all AML. Results were analogous with FLT3 ITD, FLT3 TKD, and JAK2 mutations. Examining 20 individually mutated genes detected in ≥ 10 patients only with SRSF2 (p=0.04), did distribution of VAF differ statistically according to whether blast percentage was <20% versus ≥20%. Conclusions: The similar prevalence of mutations in different functional categories in MDS-EB and AML-MRC/t-AML suggests these entities are two manifestations of the same disease. We believe it appropriate to combine these WHO entities allowing patients in each to be eligible for both AML and MDS trials. Disclosures Othus: Glycomimetics: Other: Data Safety and Monitoring Committee; Celgene: Other: Data Safety and Monitoring Committee. Walter:Amgen: Consultancy; Boston Biomedical: Consultancy; Agios: Consultancy; Argenx BVBA: Consultancy; Astellas: Consultancy; BioLineRx: Consultancy; BiVictriX: Consultancy; Covagen: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmaceuticals: Consultancy; Kite Pharma: Consultancy; New Link Genetics: Consultancy; Pfizer: Consultancy, Research Funding; Race Oncology: Consultancy; Seattle Genetics: Research Funding; Amphivena Therapeutics: Consultancy, Equity Ownership; Boehringer Ingelheim: Consultancy; Aptevo Therapeutics: Consultancy, Research Funding. Becker:Accordant Health Services/Caremark: Consultancy; AbbVie, Amgen, Bristol-Myers Squibb, Glycomimetics, Invivoscribe, JW Pharmaceuticals, Novartis, Trovagene: Research Funding; The France Foundation: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1397-1397
Author(s):  
Diego Chacon ◽  
Ali Braytee ◽  
Yizhou Huang ◽  
Julie Thoms ◽  
Shruthi Subramanian ◽  
...  

Background: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy and risk stratification based on genetic and clinical variables is standard practice. However, current models incorporating these factors accurately predict clinical outcomes for only 64-80% of patients and fail to provide clear treatment guidelines for patients with intermediate genetic risk. A plethora of prognostic gene expression signatures (PGES) have been proposed to improve outcome predictions but none of these have entered routine clinical practice and their role remains uncertain. Methods: To clarify clinical utility, we performed a systematic evaluation of eight highly-cited PGES i.e. Marcucci-7, Ng-17, Li-24, Herold-29, Eppert-LSCR-48, Metzeler-86, Eppert-HSCR-105, and Bullinger-133. We investigated their constituent genes, methodological frameworks and prognostic performance in four cohorts of non-FAB M3 AML patients (n= 1175). All patients received intensive anthracycline and cytarabine based chemotherapy and were part of studies conducted in the United States of America (TCGA), the Netherlands (HOVON) and Germany (AMLCG). Results: There was a minimal overlap of individual genes and component pathways between different PGES and their performance was inconsistent when applied across different patient cohorts. Concerningly, different PGES often assigned the same patient into opposing adverse- or favorable- risk groups (Figure 1A: Rand index analysis; RI=1 if all patients were assigned to equal risk groups and RI =0 if all patients were assigned to different risk groups). Differences in the underlying methodological framework of different PGES and the molecular heterogeneity between AMLs contributed to these low-fidelity risk assignments. However, all PGES consistently assigned a significant subset of patients into the same adverse- or favorable-risk groups (40%-70%; Figure 1B: Principal component analysis of the gene components from the eight tested PGES). These patients shared intrinsic and measurable transcriptome characteristics (Figure 1C: Hierarchical cluster analysis of the differentially expressed genes) and could be prospectively identified using a high-fidelity prediction algorithm (FPA). In the training set (i.e. from the HOVON), the FPA achieved an accuracy of ~80% (10-fold cross-validation) and an AUC of 0.79 (receiver-operating characteristics). High-fidelity patients were dichotomized into adverse- or favorable- risk groups with significant differences in overall survival (OS) by all eight PGES (Figure 1D) and low-fidelity patients by two of the eight PGES (Figure 1E). In the three independent test sets (i.e. form the TCGA and AMLCG), patients with predicted high-fidelity were consistently dichotomized into the same adverse- or favorable- risk groups with significant differences in OS by all eight PGES. However, in-line with our previous analysis, patients with predicted low-fidelity were dichotomized into opposing adverse- or favorable- risk groups by the eight tested PGES. Conclusion: With appropriate patient selection, existing PGES improve outcome predictions and could guide treatment recommendations for patients without accurate genetic risk predictions (~18-25%) and for those with intermediate genetic risk (~32-35%). Figure 1 Disclosures Hiddemann: Celgene: Consultancy, Honoraria; Roche: Consultancy, Honoraria, Research Funding; Bayer: Research Funding; Vector Therapeutics: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Janssen: Consultancy, Honoraria, Research Funding. Metzeler:Celgene: Honoraria, Research Funding; Otsuka: Honoraria; Daiichi Sankyo: Honoraria. Pimanda:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Beck:Gilead: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1364-1364 ◽  
Author(s):  
Anna B. Halpern ◽  
Megan Othus ◽  
Kelda Gardner ◽  
Genevieve Alcorn ◽  
Mary-Elizabeth M. Percival ◽  
...  

Background: Optimal treatment for medically less fit adults with acute myeloid leukemia (AML) remains uncertain. Retrospective data suggest intensive therapy may lead to better outcomes in these patients. However, these findings must be interpreted cautiously because of the possibility of selection bias and other confounders. Ideally, the optimal treatment intensity is defined via randomized trial but whether patients and their physicians are amenable to such a study is unknown. We therefore designed a trial (NCT03012672) to 1) evaluate the feasibility of randomization between intensive and non-intensive therapy in this population and 2) examine the impact of treatment intensity on response rate and survival. We used CLAG-M as high-dose cytarabine-based intensive induction therapy. Rather than selecting different classes of drugs in the 2 treatment arms- which may have different modes of action and therefore confound the question of treatment intensity - we used reduced-dose ("mini") CLAG-M as the non-intensive comparator. Methods: Adults ≥18 years were eligible if they had untreated AML or high-grade myeloid neoplasms (≥10% blasts in blood or marrow) and were medically less fit as defined by having a "treatment related mortality" (TRM) score of ≥13.1, corresponding to a &gt;10-15% 28-day mortality with intensive chemotherapy. Left ventricular ejection fraction ≤45% was the only organ function exclusion. Patient-physician pairs were first asked if they were amenable to randomized treatment allocation. If so, they were randomized 1:1 to mini- vs. regular-dose CLAG-M. If not, in order to evaluate our secondary endpoints, the patient or physician could choose the treatment arm and still enroll on study. Patients and physicians then completed surveys elucidating their decision-making processes. Up to 2 induction courses were given with mini- vs. regular-dose CLAG-M: cladribine 2 or 5 mg/m2/day (days 1-5), cytarabine 100 or 2,000 mg/m2/day (days 1-5), G-CSF 300 or 480µcg/day for weight &lt;/≥76kg in both arms (days 0-5), and mitoxantrone 6 or 18 mg/m2/day (days 1-3). CLAG at identical doses was used for post-remission therapy for up to 4 (regular-dose CLAG) or 12 (mini-CLAG) cycles. The primary endpoint was feasibility of randomization, defined as ≥26/50 of patient-physician pairs agreeing to randomization. Secondary outcomes included rate of complete remission (CR) negative for measurable ("minimal") residual disease (MRD), rate of CR plus CR with incomplete hematologic recovery (CR+CRi), and overall survival (OS). Results: This trial enrolled 33 patients. Only 3 (9%) patient/physician pairs agreed to randomization and thus randomization was deemed infeasible (primary endpoint). Eighteen pairs chose mini-CLAG-M and 12 regular-dose CLAG-M for a total of 19 subjects in the lower dose and 14 subjects in the higher dose arms. The decision favoring lower dose treatment was made largely by the physician in 5/18 (28%) cases, the patient in 11/18 (61%) cases and both in 2/18 (11%). The decision favoring the higher dose arm was made by the patient in most cases 9/12 (75%), both physician and patient in 2/12 (16%) and the physician in only 1/12 (8%) cases. Despite the limitations of lack of randomization, patients' baseline characteristics were well balanced with regard to age, performance status, TRM score, lab values and cytogenetic/mutational risk categories (Table 1). One patient was not yet evaluable for response or TRM at data cutoff. Rates of MRDneg CR were comparable: 6/19 (32%) in the lower and 3/14 (21%) in the higher dose groups (p=0.70). CR+CRi rates were also similar in both arms (43% vs. 56% in lower vs. higher dose arms; p=0.47). Three (16%) patients experienced early death in the lower dose arm vs. 1 (7%) in the higher dose arm (p=0.43). With a median follow up of 4.2 months, there was no survival difference between the two groups (median OS of 6.1 months in the lower vs. 4.7 months in the higher dose arm; p=0.81; Figure 1). Conclusions: Randomization of medically unfit patients to lower- vs. higher-intensity therapy was not feasible, and physicians rarely chose higher intensity therapy in this patient group. Acknowledging the limitation of short follow-up time and small sample size, our trial did not identify significant differences in outcomes between intensive and non-intensive chemotherapy. Analysis of differences in QOL and healthcare resource utilization between groups is ongoing. Disclosures Halpern: Pfizer Pharmaceuticals: Research Funding; Bayer Pharmaceuticals: Research Funding. Othus:Celgene: Other: Data Safety and Monitoring Committee. Gardner:Abbvie: Speakers Bureau. Percival:Genentech: Membership on an entity's Board of Directors or advisory committees; Pfizer Inc.: Research Funding; Nohla Therapeutics: Research Funding. Scott:Incyte: Consultancy; Novartis: Consultancy; Agios: Consultancy; Celgene: Consultancy. Becker:AbbVie, Amgen, Bristol-Myers Squibb, Glycomimetics, Invivoscribe, JW Pharmaceuticals, Novartis, Trovagene: Research Funding; Accordant Health Services/Caremark: Consultancy; The France Foundation: Honoraria. Oehler:Pfizer Inc.: Research Funding; Blueprint Medicines: Consultancy. Walter:BioLineRx: Consultancy; Astellas: Consultancy; Argenx BVBA: Consultancy; BiVictriX: Consultancy; Agios: Consultancy; Amgen: Consultancy; Amphivena Therapeutics: Consultancy, Equity Ownership; Boehringer Ingelheim: Consultancy; Boston Biomedical: Consultancy; Covagen: Consultancy; Daiichi Sankyo: Consultancy; Jazz Pharmaceuticals: Consultancy; Seattle Genetics: Research Funding; Race Oncology: Consultancy; Aptevo Therapeutics: Consultancy, Research Funding; Kite Pharma: Consultancy; New Link Genetics: Consultancy; Pfizer: Consultancy, Research Funding. OffLabel Disclosure: Cladribine is FDA-approved for Hairy Cell Leukemia. Here we describe its use for AML, where is is also widely used with prior publications supporting its use


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Philip C. Amrein ◽  
Eyal C. Attar ◽  
Geoffrey Fell ◽  
Traci M. Blonquist ◽  
Andrew M. Brunner ◽  
...  

Introduction: Outcomes for acute myeloid leukemia (AML) among older patients has remained largely unchanged for decades. Long-term survival for patients aged &gt;60 years is poor (median survival 10.5 months). Targeting the proteasome in AML is attractive, since leukemia stem cells have demonstrated sensitivity to proteasome inhibition in preclinical models, perhaps through down regulation of nuclear NF-KB (Guzman, Blood 2001). AML cell lines are susceptible to synergistic cytotoxicity when bortezomib, a proteasome inhibitor, is combined with daunorubicin and cytarabine. We have shown that adding bortezomib to standard treatment in AML results in a high remission rate, although grade 2 sensory neurotoxicity was noted in approximately 12% of treated patients. A newer generation proteasome inhibitor, ixazomib, is less frequently associated with neurotoxicity, and, therefore, was selected for combination with conventional chemotherapy in this phase I trial. The primary objective of this study was to determine the maximum tolerated dose (MTD) of ixazomib in combination with conventional induction and consolidation chemotherapy for AML. Herein are the initial results of this trial. Methods: Adults &gt;60 years of age with newly diagnosed AML were screened for eligibility. Patients with secondary AML were eligible, including those with prior hypomethylating agent therapy for myelodysplastic syndromes (MDS). We excluded those with promyelocytic leukemia. There were 2 phases in this study. In the first phase (A), the induction treatment consisted of the following: cytarabine 100 mg/m2/day by continuous IV infusion, Days 1-7; daunorubicin 60 mg/m2/day IV, Days 1, 2, 3, and ixazomib was provided orally at the cohort dose, Days 2, 5, 9, and 12. Consolidaton or transplant was at the discretion of the treating physician in phase A. In the second phase (B), induction was the same as that with the determined MTD of ixazomib. All patients were to be treated with the following consolidation: cytarabine at 2 g/m2/day, days 1-5 with ixazomib on days 2, 5, 9, and 12 at the cohort dose for consolidation. A standard 3 + 3 patient cohort dose escalation design was used to determine whether the dose of ixazomib could be safely escalated in 3 cohorts (1.5 mg/day, 2.3 mg/day, 3.0 mg/day), initially in induction (phase A) and subsequently in consolidation (phase B). The determined MTD of ixazomib in the first portion (A) of the trial was used during induction in the second portion (B), which sought to determine the MTD for ixazomib during consolidation. Secondary objectives included rate of complete remission, disease-free survival, and overall survival (OS). Results: Thirty-six patients have been enrolled on study, and 28 have completed dose levels A-1 through A-3 and B1 through B-2. Full information on cohort B-3 has not yet been obtained, hence, this report covers the experience with the initial 28 patients, cohorts A-1 through B-2. There were 12 (43%) patients among the 28 with secondary AML, either with prior hematologic malignancy or therapy-related AML. Nineteen patients (68%) were male, and the median age was 68 years (range 61-80 years). There have been no grade 5 toxicities due to study drug. Three patients died early due to leukemia, 2 of which were replaced for assessment of the MTD. Nearly all the grade 3 and 4 toxicities were hematologic (Table). There was 1 DLT (grade 4 platelet count decrease extending beyond Day 42). There has been no grade 3 or 4 neurotoxicity with ixazomib to date. Among the 28 patients in the first 5 cohorts, 22 achieved complete remissions (CR) and 2 achieved CRi, for a composite remission rate (CCR) of 86%. Among the 12 patients with secondary AML 8 achieved CR and 2 achieved CRi, for a CCR of 83%. The median OS for the 28 patients has not been reached (graph). The 18-month OS estimate was 65% [90% CI, 50-85%]. Conclusions: The highest dose level (3 mg) of ixazomib planned for induction in this trial has been reached safely. For consolidation there have been no serious safety issues in the first 2 cohorts with a dose up to 2.3 mg, apart from 1 DLT in the form of delayed platelet count recovery. The recommended phase 2 dose of ixazomib for induction is 3 mg. Accrual to cohort B-3 is ongoing. Notably, to date, no grade 3 or 4 neurotoxicity has been encountered. The remission rate in this older adult population with the addition of ixazomib to standard chemotherapy appears favorable. Figure Disclosures Amrein: Amgen: Research Funding; AstraZeneca: Consultancy, Research Funding; Takeda: Research Funding. Attar:Aprea Therapeutics: Current Employment. Brunner:Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Forty-Seven Inc: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Research Funding; Takeda: Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Hobbs:Constellation: Honoraria, Research Funding; Novartis: Honoraria; Incyte: Research Funding; Merck: Research Funding; Bayer: Research Funding; Jazz: Honoraria; Celgene/BMS: Honoraria. Neuberg:Celgene: Research Funding; Madrigak Pharmaceuticals: Current equity holder in publicly-traded company; Pharmacyclics: Research Funding. Fathi:Blueprint: Consultancy; Boston Biomedical: Consultancy; BMS/Celgene: Consultancy, Research Funding; Novartis: Consultancy; Kura Oncology: Consultancy; Trillium: Consultancy; Amgen: Consultancy; Seattle Genetics: Consultancy, Research Funding; Abbvie: Consultancy; Pfizer: Consultancy; Newlink Genetics: Consultancy; Forty Seven: Consultancy; Trovagene: Consultancy; Kite: Consultancy; Daiichi Sankyo: Consultancy; Astellas: Consultancy; Amphivena: Consultancy; PTC Therapeutics: Consultancy; Agios: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Jazz: Consultancy. OffLabel Disclosure: Ixazomib is FDA approved for multiple myeloma. We are using it in this trial for acute myeloid leukemia.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-9
Author(s):  
Sujan Piya ◽  
Marla Weetall ◽  
Josephine Sheedy ◽  
Balmiki Ray ◽  
Huaxian Ma ◽  
...  

Introduction: Acute myeloid leukemia (AML) is characterized by both aberrant proliferation and differentiation arrest at hematopoietic progenitor stages 1,2. AML relies upon de novo nucleotide synthesis to meet a dynamic metabolic landscape and to provide a sufficient supply of nucleotides and other macromolecules 3,4. Hence, we hypothesized that inhibition of de novo nucleotide synthesis would lead to depletion of the nucleotide pool and pyrimidine starvation in leukemic cells compared to their non-malignant counterparts and impact proliferative and differentiation inhibition pathways. PTC299 is an inhibitor of dihydroorotate dehydrogenase (DHODH), a rate limiting enzyme for de novo pyrimidine nucleotide synthesis that is currently in a clinical trial for the treatment of AML. Aim: We investigated the pre-clinical activity of PTC299 against AML in primary AML blasts and cytarabine-resistant cell lines. To confirm that PTC299 effects are due to inhibition of de novo pyrimidine nucleotide synthesis for leukemic growth, we specifically tested the impact of uridine and orotate rescue. In addition, a comprehensive analysis of alteration of metabolic signaling in PI3K/AKT pathways, apoptotic signatures and DNA damage responses were analyzed by Mass cytometry based proteomic analysis (CyTOF) and immunoblotting. The potential clinical relevance of DHODH inhibition was confirmed in an AML-PDX model. Results: The IC50s for all tested cell lines (at 3 day) and primary blasts (at 5-7 day) were in a very low nanomolar range: OCI-AML3 -4.43 nM, HL60 -59.7 nM and primary samples -18-90 nM. Treatment of AML in cytarabine-resistant cells demonstrated that PTC299 induced apoptosis, differentiation, and reduced proliferation with corresponding increase in Annexin V and CD14 positive cells (Fig.1). PTC299-induced apoptosis and inhibition of proliferation was rescued by uridine and orotate. To gain more mechanistic insights, we used an immunoblotting and mass cytometry (CyTOF) based approach to analyze changes in apoptotic and cell signaling proteins in OCI-AML3 cells. Apoptotic pathways were induced (cleaved PARP, cleaved Caspase-3) and DNA damage responses (TP53, γH2AX) and the PI3/AKT pathway were downregulated in response to PTC299. In isogenic cell lines, p53-wildtype cells were sustained and an increased DNA damage response with corresponding increase in apoptosis in comparison to p53-deficient cells was shown. (Fig.2) In a PDX mouse model of human AML, PTC299 treatment improved survival compared to mice treated with vehicle (median survival 40 days vs. 30 days, P=0.0002) (Fig.3). This corresponded with a reduction in the bone marrow burden of leukemia with increased expression of differentiation markers in mice treated with PTC299 (Fig.3). Conclusion: PTC299 is a novel dihydroorotate dehydrogenase (DHODH) inhibitor that triggers differentiation, apoptosis and/or inhibition of proliferation in AML and is being tested in a clinical trials for the treatment of acute myeloid malignancies. Reference: 1. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129(12): 1577-1585. e-pub ahead of print 2017/02/06; doi: 10.1182/blood-2016-10-696054 2. Quek L, Otto GW, Garnett C, Lhermitte L, Karamitros D, Stoilova B et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. The Journal of experimental medicine 2016; 213(8): 1513-1535. e-pub ahead of print 2016/07/06; doi: 10.1084/jem.20151775 3. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 2019; 11(5). e-pub ahead of print 2019/05/22; doi: 10.3390/cancers11050688 4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200. e-pub ahead of print 2016/07/08; doi: 10.1126/sciadv.1600200 Disclosures Weetall: PTC Therapeutic: Current Employment. Sheedy:PTC therapeutics: Current Employment. Ray:PTC Therapeutics Inc.: Current Employment. Konopleva:Genentech: Consultancy, Research Funding; Rafael Pharmaceutical: Research Funding; Ablynx: Research Funding; Ascentage: Research Funding; Agios: Research Funding; Kisoji: Consultancy; Eli Lilly: Research Funding; AstraZeneca: Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; AbbVie: Consultancy, Research Funding; Calithera: Research Funding; Cellectis: Research Funding; Amgen: Consultancy; Stemline Therapeutics: Consultancy, Research Funding; Forty-Seven: Consultancy, Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Sanofi: Research Funding. Andreeff:Amgen: Research Funding; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees. Borthakur:BioLine Rx: Consultancy; BioTherix: Consultancy; Nkarta Therapeutics: Consultancy; Treadwell Therapeutics: Consultancy; Xbiotech USA: Research Funding; Polaris: Research Funding; AstraZeneca: Research Funding; BMS: Research Funding; BioLine Rx: Research Funding; Cyclacel: Research Funding; GSK: Research Funding; Jannsen: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding; PTC Therapeutics: Research Funding; FTC Therapeutics: Consultancy; Curio Science LLC: Consultancy; PTC Therapeutics: Consultancy; Argenx: Consultancy; Oncoceutics: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Alexander E. Perl ◽  
Qiaoyang Lu ◽  
Alan Fan ◽  
Nahla Hasabou ◽  
Erhan Berrak ◽  
...  

Background: Gilteritinib is approved for patients (pts) with relapsed/refractory (R/R) FLT3-mutated acute myeloid leukemia (AML), based on findings from the phase 3 ADMIRAL trial (Perl AE, et al. N Engl J Med. 2019). A phase 3 trial, QuANTUM-R, demonstrated the benefit of quizartinib in pts with R/R AML with FLT3 internal tandem duplication (FLT3-ITD) mutations (Cortes JE, et al. Lancet Oncol. 2019). Although eligibility criteria across both studies were similar, QuANTUM-R was more stringent as to prior therapy intensity and remission duration, which potentially enriched for higher-risk pts. We sought to describe outcomes from ADMIRAL among pts who otherwise met eligibility for QuANTUM-R. Methods: In this post-hoc analysis, a subset of pts from ADMIRAL were matched with R/R FLT3-ITD+ AML pts from QuANTUM-R on the basis of baseline characteristics and prior treatment criteria. Matched pts were either refractory to initial anthracycline-based chemotherapy or had relapsed ≤6 mos after achieving composite complete remission (CRc) with an anthracycline-based regimen. Results: Overall, 218 pts with R/R FLT3-ITD+ AML in the ADMIRAL trial (gilteritinib, n=140; salvage chemotherapy [SC], n=78) were matched with the QuANTUM-R intention-to treat (ITT) population (N=367; quizartinib, n=245; SC, n=122). Proportions of pts preselected for high-intensity SC were 66% (n=143/218) in the matched ADMIRAL ITT population and 77% (n=281/367) in the QuANTUM-R ITT populations. Demographic and baseline characteristics of the matched ADMIRAL ITT population and QuANTUM-R ITT population were similar. Median durations of exposure to gilteritinib and quizartinib were 3.8 mos and 3.2 mos, respectively, and median number of treatment cycles received were five and four, respectively. Rates of hematopoietic stem cell transplantation (HSCT) were similar in pts treated with gilteritinib (35%; n=49/140) or quizartinib (32%; n=78/245), as were the proportions of pts who resumed gilteritinib (23%; n=32/140) or quizartinib (20%; n=48/245) therapy post-HSCT. Median overall survival (OS) in pts treated with gilteritinib or quizartinib was longer than that observed with SC. After a median follow-up of 17.4 mos, median OS was 10.2 mos with gilteritinib versus 5.6 mos with SC (hazard ratio [HR]=0.573 [95% CI: 0.403, 0.814]; one-sided nominal P=0.0008). After a median follow-up of 23.5 mos, median OS with quizartinib was 6.2 mos versus 4.7 mos with SC (HR=0.76 [95% CI: 0.58-0.98]; one-sided P=0.02). After censoring for HSCT, median OS was 9.3 mos with gilteritinib versus 5.5 mos with SC (HR=0.525 [95% CI: 0.356-0.775]; nominal one-sided P=0.0005), and 5.7 mos versus 4.6 mos with quizartinib versus SC, respectively (HR=0.79 [95% CI: 0.59, 1.05]; one-sided P=0.05). In both QuANTUM-R and matched ADMIRAL populations, the survival benefits of quizartinib and gilteritinib compared with SC were maintained across multiple subgroups, including high FLT3-ITD allelic ratio subsets. Compared with SC, high CRc rates were observed in pts treated with either gilteritinib (57%; n=80/140) or quizartinib (48%; n=118/245). The complete remission (CR) rate with gilteritinib was 23% (n=32/140), whereas the CR rate with quizartinib was 4% (n=10/245) (Table). Median time to achieve CRc was 1.8 mos with gilteritinib and 1.1 mos with quizartinib, median duration of CRc was 5.5 mos with gilteritinib and 2.8 mos with quizartinib. The safety profiles of gilteritinib and quizartinib were generally similar, though aspartate or alanine aminotransferase elevations (any grade) were more frequent with gilteritinib (41-44%) than quizartinib (≤13%), whereas neutropenia (14% vs 34%, respectively), fatigue (24% vs 39%, respectively), and prolonged QT intervals (9% vs 27%, respectively) were more frequent with quizartinib. Conclusions: In pts with R/R FLT3-ITD+ AML and similar baseline characteristics, both gilteritinib and quizartinib were generally well tolerated and associated with improved survival and treatment response compared with SC. Responses to gilteritinib and quizartinib, as measured by CRc, were similar; blood count recovery varied between the two FLT3 inhibitors. Although cross-study comparisons have substantial limitations, the findings suggest that while remission is achieved faster with quizartinib, response may be more durable and survival potentially longer with gilteritinib. Disclosures Perl: Syndax: Consultancy, Honoraria; Leukemia & Lymphoma Society, Beat AML: Consultancy; Novartis: Honoraria, Other, Research Funding; Agios: Consultancy, Honoraria, Other; Jazz: Honoraria, Other; FORMA Therapeutics: Consultancy, Honoraria, Other; Daiichi Sankyo: Consultancy, Honoraria, Other: Writing/editorial support, travel costs for meetings, Research Funding; FUJIFILM Pharmaceuticals USA, Inc: Research Funding; New Link Genetics: Honoraria, Other; Arog Pharmaceuticals Inc: Other: uncompensated consulting, travel costs for meetings; Actinium Pharmaceuticals Inc: Consultancy, Honoraria, Research Funding; Biomed Valley Discoveries: Research Funding; Astellas: Consultancy, Honoraria, Other: writing/editorial support, travel costs for meeting presentations related to study, Research Funding; Bayer HealthCare Pharmaceuticals: Research Funding; AbbVie Inc: Consultancy, Honoraria, Other, Research Funding; Takeda: Honoraria, Other: Travel costs for meeting; Loxo Oncology Inc, a wholly owned subsidiary of Eli Lilly & Company: Consultancy, Honoraria, Other. Lu:Astellas: Current Employment. Fan:Astellas Pharma: Current Employment. Hasabou:Astellas Pharma: Current Employment. Berrak:Astellas: Current Employment. Tiu:Eli Lilly & Company: Current equity holder in publicly-traded company, Ended employment in the past 24 months; Astellas Pharma Global Development: Current Employment.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1528-1528
Author(s):  
Sebastian Stasik ◽  
Jan Moritz Middeke ◽  
Michael Kramer ◽  
Christoph Rollig ◽  
Alwin Krämer ◽  
...  

Abstract Purpose: The enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase and key epigenetic regulator involved in transcriptional repression and embryonic development. Loss of EZH2 activity by inactivating mutations is associated with poor prognosis in myeloid malignancies such as MDS. More recently, EZH2 inactivation was shown to induce chemoresistance in acute myeloid leukemia (AML) (Göllner et al., 2017). Data on the frequency and prognostic role of EZH2-mutations in AML are rare and mostly confined to smaller cohorts. To investigate the prevalence and prognostic impact of this alteration in more detail, we analyzed a large cohort of AML patients (n = 1604) for EZH2 mutations. Patients and Methods: All patients analyzed had newly diagnosed AML, were registered in clinical protocols of the Study Alliance Leukemia (SAL) (AML96, AML2003 or AML60+, SORAML) and had available material at diagnosis. Screening for EZH2 mutations and associated alterations was done using Next-Generation Sequencing (NGS) (TruSight Myeloid Sequencing Panel, Illumina) on an Illumina MiSeq-system using bone marrow or peripheral blood. Detection was conducted with a defined cut-off of 5% variant allele frequency (VAF). All samples below the predefined threshold were classified as EZH2 wild type (wt). Patient clinical characteristics and co-mutations were analyzed according to the mutational status. Furthermore, multivariate analysis was used to identify the impact of EZH2 mutations on outcome. Results: EZH2-mutations were found in 63 of 1604 (4%) patients, with a median VAF of 44% (range 6-97%; median coverage 3077x). Mutations were detected within several exons (2-6; 8-12; 14-20) with highest frequencies in exons 17 and 18 (29%). The majority of detected mutations (71% missense and 29% nonsense/frameshift) were single nucleotide variants (SNVs) (87%), followed by small indel mutations. Descriptive statistics of clinical parameters and associated co-mutations revealed significant differences between EZH2-mut and -wt patients. At diagnosis, patients with EZH2 mutations were significantly older (median age 59 yrs) than EZH2-wt patients (median 56 yrs; p=0.044). In addition, significantly fewer EZH2-mut patients (71%) were diagnosed with de novo AML compared to EZH2-wt patients (84%; p=0.036). Accordingly, EZH2-mut patients had a higher rate of secondary acute myeloid leukemia (sAML) (21%), evolving from prior MDS or after prior chemotherapy (tAML) (8%; p=0.036). Also, bone marrow (and blood) blast counts differed between the two groups (EZH2-mut patients had significantly lower BM and PB blast counts; p=0.013). In contrast, no differences were observed for WBC counts, karyotype, ECOG performance status and ELN-2017 risk category compared to EZH2-wt patients. Based on cytogenetics according to the 2017 ELN criteria, 35% of EZH2-mut patients were categorized with favorable risk, 28% had intermediate and 37% adverse risk. No association was seen with -7/7q-. In the group of EZH2-mut AML patients, significantly higher rates of co-mutations were detected in RUNX1 (25%), ASXL1 (22%) and NRAS (25%) compared to EZH2-wt patients (with 10%; 8% and 15%, respectively). Vice versa, concomitant mutations in NPM1 were (non-significantly) more common in EZH2-wt patients (33%) vs EZH2-mut patients (21%). For other frequently mutated genes in AML there was no major difference between EZH2-mut and -wt patients, e.g. FLT3ITD (13%), FLT3TKD (10%) and CEBPA (24%), as well as genes encoding epigenetic modifiers, namely, DNMT3A (21%), IDH1/2 (11/14%), and TET2 (21%). The correlation of EZH2 mutational status with clinical outcomes showed no effect of EZH2 mutations on the rate of complete remission (CR), relapse free survival (RFS) and overall survival (OS) (with a median OS of 18.4 and 17.1 months for EZH2-mut and -wt patients, respectively) in the univariate analyses. Likewise, the multivariate analysis with clinical variable such as age, cytogenetics and WBC using Cox proportional hazard regression, revealed that EZH2 mutations were not an independent risk factor for OS or RFS. Conclusion EZH mutations are recurrent alterations in patients with AML. The association with certain clinical factors and typical mutations such as RUNX1 and ASXL1 points to the fact that these mutations are associated with secondary AML. Our data do not indicate that EZH2 mutations represent an independent prognostic factor. Disclosures Middeke: Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees. Rollig:Bayer: Research Funding; Janssen: Research Funding. Scholl:Jazz Pharma: Membership on an entity's Board of Directors or advisory committees; Abbivie: Other: Travel support; Alexion: Other: Travel support; MDS: Other: Travel support; Novartis: Other: Travel support; Deutsche Krebshilfe: Research Funding; Carreras Foundation: Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees. Hochhaus:Pfizer: Research Funding; Incyte: Research Funding; Novartis: Research Funding; Bristol-Myers Squibb: Research Funding; Takeda: Research Funding. Brümmendorf:Janssen: Consultancy; Takeda: Consultancy; Novartis: Consultancy, Research Funding; Merck: Consultancy; Pfizer: Consultancy, Research Funding. Burchert:AOP Orphan: Honoraria, Research Funding; Bayer: Research Funding; Pfizer: Honoraria; Bristol Myers Squibb: Honoraria, Research Funding; Novartis: Research Funding. Krause:Novartis: Research Funding. Hänel:Amgen: Honoraria; Roche: Honoraria; Takeda: Honoraria; Novartis: Honoraria. Platzbecker:Celgene: Research Funding. Mayer:Eisai: Research Funding; Novartis: Research Funding; Roche: Research Funding; Johnson & Johnson: Research Funding; Affimed: Research Funding. Serve:Bayer: Research Funding. Ehninger:Cellex Gesellschaft fuer Zellgewinnung mbH: Employment, Equity Ownership; Bayer: Research Funding; GEMoaB Monoclonals GmbH: Employment, Equity Ownership. Thiede:AgenDix: Other: Ownership; Novartis: Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 338-338
Author(s):  
Bradstock Kenneth ◽  
Emma Link ◽  
Juliana Di Iulio ◽  
Jeff Szer ◽  
Paula Marlton ◽  
...  

Abstract Background: Anthracylines are one of the major classes of drugs active against acute myeloid leukemia (AML). Increased doses of daunorubicin during induction therapy for AML have been shown to improve remission rates and survival. The ALLG used idarubicin in induction therapy at a dose of 9 mg/m2 x 3 days (total dose 27 mg/m2) in combination with high-dose cytarabine and etoposide (Blood 2005, 105:481), but showed that a total idarubicin dose of 36 mg/m2 was too toxic in this context (Leukemia 2001, 15:1331). In order to further improve outcomes in adult AML by anthracycline dose escalation, we conducted a phase 3 trial comparing standard to an increased idarubicin dose during consolidation therapy. Methods: Patients achieving complete remission after 1 or 2 cycles of intensive induction therapy (idarubicin 9 mg/m2 daily x3, cytarabine 3 g/m2 twice daily on days 1,3,5 and 7, and etoposide 75 mg/m2 daily x7; ICE protocol) were randomized to receive 2 cycles of consolidation therapy with cytarabine 100 mg/m2 per day for 5 days, etoposide 75 mg/m2 for 5 days, and idarubicin 9mg/m2 daily for either 2 or 3 days (standard and intensive arms respectively). No further protocol therapy was given. The primary endpoint was leukemia-free survival from randomization to consolidation therapy (LFS) with overall survival (OS) as secondary endpoint. Results: A total of 422 patients with AML (excluding cases with CBF rearrangements or APL) aged 16 to 60 years were enrolled between 2003-10, with 345 (82%) achieving complete remission, and 293 being randomized to standard (n=146) or intensive (n=147) consolidation arms. The median age was 45 years in both arms (range 16- 60), and both groups were balanced for intermediate versus unfavorable karyotypes and for frequency of mutations involving FLT3-ITD and NPM1 genes. Of the randomized patients, 120 in the standard arm (82%) and 95 in the intensive arm (65%) received the second consolidation cycle (p<0.001). The median total dose of idarubicin received in the 2 consolidation courses was 36 mg/m2 (range 17-45), or 99% (47-125%) of the protocol dose in the standard arm, versus 53 mg/m2 (18-73), or 98% (33-136%) of the protocol dose in the intensive arm. The durations of grades 3-4 neutropenia and thrombocytopenia were significantly longer in the intensive arm, but there were no differences in grade 3 or 4 non-hematological toxicities. There were no non-relapse deaths during consolidation on the standard arm and 2 in the intensive (0% vs 1%; p =0.50). Subsequently, 41 patients in the standard arm and 37 in the intensive arm underwent elective allogeneic BMT during first remission. On intention to-treat analysis uncensored for transplant and with a median follow-up time of 5.3 years (range 0.6 - 9.9), there was improvement in LFS in the intensive arm compared with the standard arm (3 year LFS 47% (95% CI 40-56%) versus 35% (28-44%); HR 0.74 (95% CI 0.55-0.99); p=0.045) (Figure 1). The 3 year OS for the intensive arm was 61% (95% CI 54-70%) and 50% (95% CI 43-59%) for the standard arm; HR 0.75 (95% CI 0.54-1.05); p=0.092). Although adverse cytogenetics, presence of FLT3-ITD mutation, and absence of NPM1 mutation were all associated with poorer outcomes, there was no evidence of a benefit of intensive consolidation being confined to specific cytogenetic or gene mutation sub-groups. Conclusion: We conclude that in adult patients in complete remission after intensive induction chemotherapy an increased dose of idarubicin delivered during consolidation therapy results in improved LFS, without increased non-hematologic toxicity. Figure 1. Figure 1. Disclosures Szer: Ra Pharma: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alexion Pharmaceuticals, Inc.: Honoraria, Membership on an entity's Board of Directors or advisory committees; Alnylam: Honoraria, Membership on an entity's Board of Directors or advisory committees. Marlton:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees. Wei:Novartis: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria; CTI: Consultancy, Honoraria; Abbvie: Honoraria, Research Funding; Servier: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding. Cartwright:ROCHE: Consultancy, Membership on an entity's Board of Directors or advisory committees. Roberts:Servier: Research Funding; Janssen: Research Funding; Genentech: Research Funding; AbbVie: Research Funding. Mills:Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Meeting attendance sponsorship. Gill:Janssen: Membership on an entity's Board of Directors or advisory committees. Seymour:Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Genentech: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Research Funding, Speakers Bureau; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document