scholarly journals Suboptimal Antiplatelet Therapy Suggested By Platelet Aggregation Studies Does Not Correlate with a Change in Clinical Management

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4634-4634
Author(s):  
Dharmesh Gopalakrishnan ◽  
Heesun J Rogers ◽  
Paul Elson ◽  
Keith R. McCrae

Abstract Introduction: With the expanding repertoire of antiplatelet drug targets and therapies, quantifiable parameters to assess their efficacy can prove to be useful in clinical decision-making. In this retrospective analysis we examined patients who had platelet aggregation testing done at our center between August 2008 and August 2013, focusing on those who were on some form of antiplatelet therapy during testing. Our goal was to define the impact of platelet aggregation testing on decision-making regarding continuation or change in antiplatelet therapy. Methods: Light transmission aggregometry (LTA) was used to assess efficacy of treatment with antiplatelet agents. Inhibition of platelet aggregation in response to ADP and arachidonic acid are reflective of the therapeutic effect of aspirin, while inhibition of platelet aggregation in response to ADP reflects the effect of P2Y12 receptor antagonists. As per parameters developed at our center, the combination of arachidonic acid aggregation <20 percent and ADP aggregation (at concentration of 5 uM) <70 percent is indicative of optimal therapeutic response to aspirin. Though not fully standardized, ADP aggregation < 40% is considered to be indicative of therapeutic response to clopidogrel. Descriptive statistics for frequency were used. Pearson coefficient was used to assess correlation. Results: We studied results of platelet aggregometry in 117 patients who were on some form of antiplatelet therapy - 81 on a single agent (72 on aspirin alone, 9 receiving P2Y12 antagonist alone), 34 on dual therapy (33 on aspirin + P2Y12 antagonist, 1 on aspirin + cilostazol), and 2 patients on triple therapy (1 on aspirin + P2Y12 antagonist + cilostazol, 1 on aspirin + dipyridamole + cilostazol). None of our patients were on Gp IIb/IIIa inhibitors. In total, 108 patients were on aspirin therapy and 43 patients were on P2Y12 inhibitors. In 65 out of these 117 patients, the primary indication for platelet aggregation testing was to monitor the efficacy of antiplatelet therapy, while in the remaining 52, testing was done for other indications. Fifty-nine of these 65 patients were tested in the setting of a recent thrombotic event in the cerebral, coronary, peripheral, or other vascular bed. While 68 (58%) patients had optimal therapeutic response, 49 (42%) patients - 38 of the 108 (35%) patients on aspirin, and 14 of the 43 (32%) patients on a P2Y12 inhibitor - had evidence of suboptimal response to the respective agent. However, antiplatelet therapy was changed or adjusted in only 8 of these 49 patients following these sub-optimal test results, and only 3 had repeat testing following the change (all three of whom were shown to have complete response). Among the 108 patients on aspirin therapy, the total daily dose did not correlate either with the PFA-100 closure times (Collagen/ADP or Collagen/epinephrine) or with the degree of platelet aggregation in response to any of the agonists (ADP, arachidonic acid, collagen, epinephrine or ristocetin). Conclusions: Most of the patients who underwent platelet aggregation testing to monitor the efficacy of antiplatelet therapy had a recent thrombotic event that prompted the test. Though 42% of patients on antiplatelet agent(s) had in vitro evidence of sub-optimal platelet inhibition, antiplatelet therapy was changed or adjusted in only 16% of these individuals, and only 6% had repeat testing following the change. This suggests that, though platelet aggregation testing was potentially useful in monitoring efficacy of platelet inhibition, clinical changes in antiplatelet therapy were guided more by other factors, casting uncertainty upon the cost effectiveness of platelet function testing in this population. No significant increment was found in the in vitro antiplatelet effect of aspirin with increasing daily doses, suggesting lack of a dose-response beyond 81 mg per day. Disclosures McCrae: Syntimmune: Consultancy; Janssen: Membership on an entity's Board of Directors or advisory committees; Halozyme: Membership on an entity's Board of Directors or advisory committees; Momenta: Consultancy.

2017 ◽  
Vol 117 (08) ◽  
pp. 1651-1659 ◽  
Author(s):  
Ann-Katrin Mojica Muñoz ◽  
Janina Jamasbi ◽  
Kerstin Uhland ◽  
Heidrun Degen ◽  
Götz Münch ◽  
...  

SummaryThe efficiency of current dual antiplatelet therapy might be further improved by its combination with a glycoprotein (GP) VI-targeting strategy without increasing bleeding. GPVI-Fc, a recombinant dimeric fusion protein binding to plaque collagen and concealing binding sites for platelet GPVI, acts as a lesion-focused antiplatelet drug, and does not increase bleeding in vivo. We investigated, whether GPVI-Fc added in vitro on top of acetylsalicylic acid (ASA), the P2Y12 antagonist ticagrelor, and the fibrinogen receptor antagonist abciximab alone or in combination would increase inhibition of platelet activation by atherosclerotic plaque. Under static conditions, GPVI-Fc inhibited plaque-induced platelet aggregation by 53%, and increased platelet inhibition by ASA (51%) and ticagrelor (64%) to 66% and 80%, respectively. Under arterial flow, GPVI-Fc inhibited plaque-induced platelet aggregation by 57%, and significantly increased platelet inhibition by ASA (28%) and ticagrelor (47%) to about 81% each. The triple combination of GPVI-Fc, ASA and ticagrelor achieved almost complete inhibition of plaque-induced platelet aggregation (93%). GPVI-Fc alone or in combination with ASA or ticagrelor did not increase closure time measured by the platelet function analyzer (PFA)-200. GPVI-Fc added on top of abciximab, a clinically used anti-fibrinogen receptor antibody which blocks platelet aggregation, strongly inhibited total (81%) and stable (89%) platelet adhesion. We conclude that GPVI-Fc added on top of single or dual antiplatelet therapy with ASA and/or a P2Y12 antagonist is likely to improve anti-atherothrombotic protection without increasing bleeding risk. In contrast, the strong inhibition of platelet adhesion by GPVI-Fc in combination with GPIIb/IIIa inhibitors could be harmful.Note: The review process for this manuscript was fully handled by Gregory Y. H. Lip, Editor in Chief.Supplementary Material to this article is available at www.thrombosis-online.com.


2004 ◽  
Vol 92 (07) ◽  
pp. 89-96 ◽  
Author(s):  
David Payne ◽  
Chris Jones ◽  
Paul Hayes ◽  
Sally Webster ◽  
A. Naylor ◽  
...  

SummaryThe majority of patients who suffer peri-operative thromboembolic complication while undergoing vascular procedures do so despite taking aspirin. This study examined the antiplatelet effect of aspirin during surgery in patients undergoing carotid endarterectomy (CEA). Fifty patients undergoing CEA were standardised to 150 mg aspirin daily for ≥2 weeks. Platelet aggregation in response to arachidonic acid (AA) was measured in platelet rich plasma prepared from blood taken prior to, during, and at the end of surgery. Spontaneous platelet aggregation was also studied, as was the role of physiological agonists (ADP, collagen, thrombin, and epinephrine) in mediating the in vivo and in vitro responses to AA. Eighteen patients undergoing leg angioplasty, also on 150 mg aspirin, without general anaesthesia, served as a control group. In the CEA patients aggregation induced by AA (5 mM) increased significantly from 7.6 ± 5.5% pre-surgery to 50.8 ± 29.5% at the end of surgery (p <0.0001). Aggregation to AA was even greater in samples taken mid-surgery from a sub-set of patients (73.8 ± 7.2%; p = 0.0001), but fell to 45.9 ± 7.4% by the end of surgery. The increased aggregation in response to AA was not due to intra-operative release of physiological platelet agonists since addition of agents that block/neutralise the effects of ADP (apyrase; 4 µg/ml), thrombin (hirudin; 10 units/ml), or epinephrine (yohimbine; 10 µM/l) to the samples taken at the end of surgery did not block the increased aggregation.The patients undergoing angioplasty also showed a significant rise in the response to AA (5 mM), from 5.6 ± 5.5% pre-angioplasty to 32.4 ± 24.9% at the end of the procedure (p <0.0001), which fell significantly to 11.0 ± 8.1% 4 hours later. The antiplatelet activity of aspirin, mediated by blockade of platelet arachidonic acid metabolism, diminished significantly during surgery, but was partially restored by the end of the procedure without additional aspirin treatment.This rapidly inducible and transient effect may explain why some patients undergoing cardiovascular surgery remain at risk of peri-operative stroke and myocardial infarction.


2010 ◽  
Vol 103 (02) ◽  
pp. 379-386 ◽  
Author(s):  
Jochem van Werkum ◽  
Goran Rude ◽  
Frank Leebeek ◽  
Adrian Kruit ◽  
Christian Hackeng ◽  
...  

SummaryNovel P2Y12 inhibitors are in development to overcome the occurrence of atherothrombotic events associated with poor responsiveness to the widely used P2Y12 inhibitor clopidogrel. Cangrelor is an intravenously administered P2Y12 inhibitor that does not need metabolic conversion to an active metabolite for its antiplatelet action, and as a consequence exhibits a more potent and consistent antiplatelet profile as compared to clopidogrel. It was the objective of this study to determine the contribution of variation in the P2Y12 receptor gene to platelet aggregation after in vitro partial P2Y12 receptor blockade with the direct antagonist cangrelor. Optical aggregometry was performed at baseline and after in vitro addition of 0.05 and 0.25 μM cangrelor to the platelet-rich plasma of 254 healthy subjects. Five haplotype-tagging (ht)-SNPs covering the entire P2Y12 receptor gene were genotyped (rs6798347C>t, rs6787801T>c, rs9859552C>a, rs6801273A>g and rs2046934T>c [T744C]) and haplotypes were inferred. The minor c allele of SNP rs6787801 was associated with a 5% lower 20 μM ADP-induced peak platelet aggregation (0.05 μM cangrelor, p<0.05). Aa homozygotes for SNP rs9859552 showed 20% and 17% less inhibition of platelet aggregation with cangrelor when compared to CC homozygotes (0.05 and 0.25 μM cangrelor respectively; p<0.05). Results of the haplotype analyses were consistent with those of the single SNPs. Polymorphisms of the P2Y12 receptor gene contribute significantly to the interindividual variability in platelet inhibition after partial in vitro blockade with the P2Y12 antagonist cangrelor.


2008 ◽  
Vol 100 (07) ◽  
pp. 83-89 ◽  
Author(s):  
Sasidhar Guthikonda ◽  
Kirankumar Mangalpally ◽  
Rajnikant Patel ◽  
Timothy DeLao ◽  
Angela L. Bergeron ◽  
...  

SummaryAspirin ‘resistance’ (AR) is a phenomenon of uncertain etiology describing decreased platelet inhibition by aspirin. We studied whether (i) platelets inAR demonstrate increased basal sensitivity to a lower degree of stimulation and (ii) platelet aggregation with submaximal stimulation could predict responses to aspirin. Serum thromboxane B2 (TxB2) levels and platelet aggregation with light transmission aggregometry (LTA ) were measured at baseline and 24 hours after 325 mg aspirin administration in 58 healthy subjects. AR was defined as the upper sixth of LTA (≥ 12%) to 1.5 mM AA. Baseline platelet aggregation with sub-maximal concentrations of agonists [ADP 2 µM, arachidonic acid (AA) 0.75 mM, collagen 0.375 and 0.5 µg/ml] was greater in AR subjects compared with non-AR subjects, but not with higher concentrations (ADP 5 µM and 20 µM, AA 1.5 mM and collagen 1 µg/ml). Post-aspirin platelet aggregation was elevated in AR subjects with both submaximal and maximal stimulation. Baseline and post-aspirin serumTxB2 were higher inAR subjects and decreased further with ex-vivo COX -1 inhibition, suggesting incompletely suppressed COX -1 activity. Pre-aspirin platelet aggregation to 0.75 AA demonstrated a dichotomous response with 29/58 subjects having aggregation ≤15% and 29/58 subjects having aggregation ≥75%. In the high aggregation group 28% had AR compared to 6% in the non-AR group (p=0.04). In conclusion, platelets in AR subjects demonstrate increased basal sensitivity to submaximal stimulation, which could predict responses to antiplatelet therapy.


1990 ◽  
Vol 64 (03) ◽  
pp. 473-477 ◽  
Author(s):  
Shih-Luen Chen ◽  
Wu-Chang Yang ◽  
Tung-Po Huang ◽  
Shiang Wann ◽  
Che-ming Teng

SummaryTherapeutic preparations of desmopressin for parenteral use contain the preservative chlorobutanol (5 mg/ml). We show here that chlorobutanol is a potent inhibitor of platelet aggregation and release. It exhibited a significant inhibitory activity toward several aggregation inducers in a concentration- and time-dependent manner. Thromboxane B2 formation, ATP release, and elevation of cytosolic free calcium caused by collagen, ADP, epinephrine, arachidonic acid and thrombin respectively were markedly inhibited by chlorobutanol. Chlorobutanol had no effect on elastase- treated platelets and its antiplatelet effect could be reversed. It is concluded that the antiplatelet effect of chlorobutanol is mainly due to its inhibition on the arachidonic acid pathway but it is unlikely to have a nonspecitic toxic effect. This antiplatelet effect of chlorobutanol suggests that desmopressin, when administered for improving hemostasis, should not contain chlorobutanol as a preservative.


1992 ◽  
Vol 67 (02) ◽  
pp. 258-263 ◽  
Author(s):  
Raffaele De Caterina ◽  
Rosa Sicari ◽  
An Yan ◽  
Walter Bernini ◽  
Daniela Giannessi ◽  
...  

SummaryIndobufen is an antiplatelet drug able to inhibit thromboxane production and cyclooxygenase-dependent platelet aggregation by a reversible inhibition of cyclooxygenase. Indobufen exists in two enantiomeric forms, of which only d-indobufen is active in vitro in inhibiting cyclooxygenase. In order to verify that also inhibition of platelet function is totally accounted for by d-indobufen, ten patients with proven coronary artery disease (8 male, 2 female, age, mean ± S.D., 58.7 ± 7.5 years) were given, in random sequence, both 100 mg d-indobufen and 200 mg dl-indobufen as single administrations in a double-blind crossover design study with a washout period between treatments of 72 h. In all patients thromboxane (TX) B2 generation after spontaneous clotting (at 0, 1, 2, 4, 6, 8, 12, 24 h), drug plasma levels (at the same times), platelet aggregation in response to ADP, adrenaline, arachidonic acid, collagen, PAF, and bleeding time (at 0, 2, 12 h) were evaluated after each treatment. Both treatments determined peak inhibition of TXB2 production at 2 h from administration, with no statistical difference between the two treatments (97 ±3% for both treatments). At 12 h inhibition was 87 ± 6% for d-indobufen and 88 ± 6% for dl-indobufen (p = NS). Inhibition of TXB2 production correlated significantly with plasma levels of the drugs. Maximum inhibitory effect on aggregation was seen in response to collagen 1.5 pg/ml (63 ± 44% for d-indobufen and 81 ± 22% for dl-indobufen) and arachidonic acid 0.5-2 mM (78 ± 34% for d-indobufen and 88 ± 24% for dl-indobufen) at 2 h after each administration. An effect of both treatments on platelet aggregation after 12 h was present only for adrenaline 2 μM (55 ± 41% for d-indobufen and 37 ± 54% for dl-indobufen), collagen 1.5 pg/ml (69 ± 30% for d-indobufen and 51 ± 61% for dl-indobufen), arachidonic acid 0.5-2 mM (56 ± 48% for d-indobufen and 35 ± 49% for dl-indobufen). The extent of inhibition of TX production and the extent of residual platelet aggregation were never significantly different between treatments. Bleeding time prolongation was similar in the two treatment groups without showing a pronounced and long lasting effect (from 7.0 ± 2.0 min to 10.0 ± 3.0 min at 2 h and 8.0 ± 2.0 min at 12 h for d-indobufen; from 6.0 ±1.0 min to 8.5 ± 2.0 min at 2 h and 8.0 ± 1.0 min at 12 h for dl-indobufen). These results demonstrate that the biological activity of dl-indobufen as an antiplatelet agent in vivo is totally accounted for by d-indobufen.


1986 ◽  
Vol 56 (01) ◽  
pp. 057-062 ◽  
Author(s):  
Martine Croset ◽  
M Lagarde

SummaryWashed human platelets were pre-loaded with icosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or EPA + DHA and tested for their aggregation response in comparison with control platelets. In fatty acid-rich platelets, an inhibition of the aggregation could be observed when induced by thrombin, collagen or U-46619. The strongest inhibition was observed with DHA-rich platelets and it was reduced when DHA was incorporated in the presence of EPA.Study of fatty acid distribution in cell lipids after loading showed that around 90% of EPA or DHA taken up was acylated into phospholipids and a very small amount (less than 2%) remained in their free and hydroxylated forms. DHA was more efficiently acylated into phosphatidylethanolamine (PE) than into phosphatidylinositol (PI) in contrast to what observed with EPA, and both acids were preferentially incorporated into phosphatidylcholine (PC). EPA inhibited total incorporation of DHA and increased its relative acylation into PE at the expense of PC. In contrast, DHA did not affect the acylation of EPA. Upon stimulation with, thrombin, EPA was liberated from phospholipids and oxygenated (as judged by the formation of its monohydroxy derivative) whereas DHA was much less metabolized, although consistently transferred into PE.It is concluded that EPA and DHA might affect platelet aggregation via different mechanisms when pre-loaded in phospholipids. Whereas EPA is known to alter thromboxane A2 metabolism from endogenous arachidonic acid, by competing with it, DHA might act directly at the membrane level for inhibiting aggregation.


1979 ◽  
Author(s):  
K.E. Sarji ◽  
J. Gonzalez ◽  
H. Hempling ◽  
J.A. Colwell

To determine whether Vitamin C might relate to the increased platelet sensitivity in the diabetic, we have measured levels of platelet Vitamin C and studied the effects of Vitamin C on platelet aggregation. Ascorbic acid levels in washed platelets from diabetics were significantly lower than from normals (4s.2±3 μg/1010 platelets vs. 2s.s±2 μg/1010 platelets, p<.001). The effects of ascorbic acid on platelet aggregation in vitro were studied by adding ascorbic acid in buffered solution (pH 7.35) prior to-aggregating agents. Ascorbic acid in platelet-rich plasma consistently inhibited platelet aggregation with threshold concentrations of ADP, epinephrine, and collagen. With washed platelets, ascorbic acid inhibited arachidonic, acid-induced aggregation. When platelets were incubated at 37°C for 10 minutes with varying concentrations of ascorbic acid, rewashed, and aggregation with arachidonic acid tested, aggregation was inhibited in a linear dose-dependent fashion. Oral ingestion of ascorbic acid (2 gm/day) for seven days by normal non-smoking males produced a marked inhibition of aggregation. In a similar study, platelets from an insulin-dependent diabetic showed no change in aggregation. These results suggest that platelet levels of ascorbic acid may relate to the hyperaggregat ion of platelets from diabetics.


1993 ◽  
Vol 21 (4) ◽  
pp. 461S-461S ◽  
Author(s):  
SHEIKH A. SAEED ◽  
RUKHSANA U. SIMJEE ◽  
SAMINA FARNAZ ◽  
ANWAR H. GILANI ◽  
SALIMUZZAMAN SIDDIQUI ◽  
...  

1994 ◽  
Vol 267 (1) ◽  
pp. H308-H318 ◽  
Author(s):  
G. Ambrosio ◽  
P. Golino ◽  
I. Pascucci ◽  
M. Rosolowsky ◽  
W. B. Campbell ◽  
...  

Reactive oxygen metabolites have been reported to affect platelet aggregation. However, this phenomenon is still poorly understood. In the present study we investigated the effects of superoxide radical and hydrogen peroxide (H2O2) on platelet function in vitro and correlated those effects to possible changes of platelet concentrations of cyclic nucleotides and thromboxane, since these systems play a key role in the response of platelets to activating stimuli. Human platelets were exposed to xanthine-xanthine oxidase (X-XO), a system that generates both superoxide radicals and H2O2. Sixty seconds of incubation with X-XO impaired aggregation in response to ADP (by 48%), collagen (by 71%), or the thromboxane mimetic U-46619 (by 50%). This effect was reversible and occurred in the absence of cell damage. Impairment of aggregation in platelets exposed to X-XO was due to H2O2 formation, since it was prevented by catalase but not by superoxide dismutase. Similarly, incubation with the pure H2O2 generator glucose-glucose oxidase also markedly inhibited ADP-induced platelet aggregation in a dose-dependent fashion. Impaired aggregation by H2O2 was accompanied by a > 10-fold increase in platelet concentrations of guanosine 3',5'-cyclic monophosphate (cGMP), whereas adenosine 3',5'-cyclic monophosphate levels remained unchanged. The inhibitory role of increased cGMP formation was confirmed by the finding that H2O2-induced impairment of platelet aggregation was largely abolished when guanylate cyclase activation was prevented by incubating platelets with the guanylate cyclase inhibitor, LY-83583. Different effects were observed when arachidonic acid was used to stimulate platelets. Exposure to a source of H2O2 did not affect aggregation to arachidonate. Furthermore, in the absence of exogenous H2O2, incubation with catalase, which had no effects on platelet response to ADP, collagen, or U-46619, virtually abolished platelet aggregation and markedly reduced thromboxane B2 production (to 44% of control) when arachidonic acid was used as a stimulus. In conclusion, our data demonstrate that H2O2 may exert complex effects on platelet function in vitro. Low levels of endogenous H2O2 seem to be required to promote thromboxane synthesis and aggregation in response to arachidonic acid. In contrast, exposure to larger (but not toxic) concentrations of exogenous H2O2 may inhibit aggregation to several agonists via stimulation of guanylate cyclase and increased cGMP formation.


Sign in / Sign up

Export Citation Format

Share Document