Bortezomib-Induced Proinflammatory Macrophages Contribute to Multiple Myeloma Cell Aggressiveness

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 5367-5367
Author(s):  
Ofrat Beyar Katz ◽  
Neta Ben-Tsedek ◽  
Irit Avivi ◽  
Dror Alishekevitz ◽  
Michael Timaner ◽  
...  

Abstract Multiple myeloma (MM) is a chronic progressive malignancy of plasma cells. Although treatment with the novel proteasome inhibitor, bortezomib, significantly improves patient survival, some patients fail to respond due to the development of de novo resistance. Previous studies revealed that chemotherapy induces pro-tumorigenic host-mediated effects which could explain tumor re-growth and metastasis(Gingis-Velitski, Loven et al. 2011, Katz, Shaked 2014). Here we show that plasma from bortezomib-treated mice significantly increases migration, viability and proliferation of human MM cells in vitro, compared to plasma from control untreated mice. Comparable results were demonstrated with plasma obtained from patients with MM treated with bortezomib. Additionally, bortezomib induces the mobilization of pro-angiogenic bone marrow cells. Mice treated with bortezomib and subsequently intravenously injected with MM cells succumb to MM aggressiveness earlier than mice treated with the vehicle control(Figure 1). We show that pro-inflammatory macrophages contribute to MM cell aggressiveness in response to bortezomib treatment, in part by secreting interleukin-16(IL-16). Blocking IL-16 in conditioned medium obtained from bortezomib-treated macrophages generated reduced viability of MM cells in vitro. Accordingly, co-inoculation of MM cells with pro-inflammatory macrophages from bortezomib-treated mice accelerates MM disease progression. Taken together, our results suggest that, in addition to the known effective anti-tumor activity of bortezomib, this drug can induce host-driven pro-tumorigenic effects that may promote MM aggressiveness. Figure 1. Host response to bortezomib promotes MM aggressiveness in mice. Eight week old CB.17 SCID mice were injected intravenously with 1mg/kg bortezomib or vehicle (veh). Four and 24 hours later mice were inoculated through the tail vein with 5x106 CAG-luciferase+ cells (n=6-7mice/group). Tumor growth and expansion was assessed by IVIS imaging system. Figure 1. Host response to bortezomib promotes MM aggressiveness in mice. Eight week old CB.17 SCID mice were injected intravenously with 1mg/kg bortezomib or vehicle (veh). Four and 24 hours later mice were inoculated through the tail vein with 5x106 CAG-luciferase+ cells (n=6-7mice/group). Tumor growth and expansion was assessed by IVIS imaging system. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3068-3068
Author(s):  
Ye Yang ◽  
Mengjie Guo ◽  
Chunyan Gu

Purpose: In recent years, with the emergence of targeted proteasome inhibitors (PIs), the treatment of multiple myeloma (MM) has made great progress and significantly improves the survival rate of patients. However, MM remains an incurable disease, mainly due to the recurrence of drug resistance. The constitutive photomorphogenic 1 (RFWD2, also known as COP1), is closely related to the occurrence and development of tumors, but its role in MM is largely unknown. This study was aimed to explore the mechanism of RFWD2 on cell proliferation and resistance to proteasome inhibitor in MM. Experimental Design: Using gene expression profiling (GEP) samples, we verified the relation of RFWD2 to MM patients' survival and drug-resistance. The effect of RFWD2 on cell proliferation was confirmed by MTT and cell cycle analysis in RFWD2-overexpressed and RFWD2-knockdown MM cells. MTT and apoptosis experiments were performed to evaluate whether RFWD2 influenced the sensitivity of MM cells to several chemotherapy drugs. MM xenografts were established in immunodeficient NOD/SCID mice by injecting wild-type or RFWD2 over-expression MM cells with drug intervention. The mechanism of drug resistance was elucidated by analyzing the association of RFWD2 with E3 ligase of p27. Bortezomib-resistant RPMI 8226 cells were used to construct RFWD2 knockdown cells, which were injected into NOD/SCID mice to assess the effect of RFWD2 on bortezomib resistance in vivo. Results: RFWD2 expression was closely related to poor outcome, relapse and bortezomib resistance in MM patients' GEP cohorts. Elevated RFWD2 induced cell proliferation, while decreased RFWD2 inhibited cell proliferation and induced apoptosis in MM cells. RFWD2-overexpression MM cells resulted in PIs resistance, however, no chemotherapy resistance to adriamycin and dexamethasone was observed in vitro. In addition, overexpressing RFWD2 in MM cells led to bortezomib resistance rather than adriamycin resistance in myeloma xenograft mouse model. RFWD2 regulated the ubiquitination degradation of P27 by interacting with RCHY1 ubiquitin ligase. The knockdown of RFWD2 in bortezomib-resistant RPMI 8226 cells overcame bortezomib resistance in vivo. Conclusions: Our data demonstrate that elevated RFWD2 induces MM cell proliferation and resistance to PIs, but not to adriamycin and dexamethasone both in vitro and in vivo through mediating the ubiquitination of p27. Collectively, RFWD2 is a novel promising therapeutic target in MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2821-2821
Author(s):  
Yang Yang ◽  
Li Nan ◽  
Larry J Suva ◽  
Ralph D. Sanderson

Abstract Abstract 2821 Poster Board II-797 Heparanase, an enzyme that cleaves the heparan sulfate chains of proteoglycans, is upregulated in a variety of human tumors including multiple myeloma. We have previously demonstrated that heparanase promotes robust myeloma tumor growth and supports spontaneous metastasis to bone. In addition we showed that expression of heparanase is a major determinant of the osteolytic phenotype in myeloma and that heparanase expression in a distal tumor can promote systemic osteolysis due to enhanced osteoclastogenesis within distal bones prior to metastasis. Because it has been shown that myeloma cells can produce and secrete RANKL, we hypothesized that heparanase upregulates the expression of RANKL thereby leading to osteolysis. To test this idea, CAG myeloma cells transfected with human heparanase cDNA (heparanase-high) or empty vector (heparanase-low) were injected into SCID mice and the levels of human RANKL expression were evaluated by immunohistolochemical staining and western blotting. A significant elevation of RANKL was observed in heparanase-high tumors compared to heparanase-low tumors formed in human bones implanted in SCID mice (SCID-hu), as well as in subcutaneous myeloma tumors. In addition, RANKL levels were significantly elevated in both in vitro cell extracts and conditioned medium of myeloma cells when heparanase expression was enhanced. The elevation of RANKL expression was also found in other myeloma cell lines (MM.1S and U266) when cells were cultured in the presence of recombinant human heparanase (50 ng/ml and 100 ng/ml each cell line, added every 12 hours) for 48 hours. In addition, in vitro osteoclastogenesis is significantly enhanced by the medium conditioned by heparanase-high cells as compared to heparanase-low cells and this enhanced osteoclastogenesis is completely abolished by addition of OPG (a RANKL inhibitor) to the medium. From these data, we conclude that elevated heparanase in myeloma cells increases RANKL expression and secretion, resulting in the increased osteolysis in myeloma. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1755-1755
Author(s):  
Salomon Manier ◽  
John Powers ◽  
Antonio Sacco ◽  
Siobhan Glavey ◽  
Daisy Huynh ◽  
...  

Abstract Background. LIN28B regulates developmental processes and cellular reprogramming by suppressing let-7 microRNAs (miRNAs). A role for LIN28B has been reported in cancers, however the LIN28B/let-7 axis has not been studied in multiple myeloma (MM). Methods. LIN28B level expression in MM patients was studied using previously published gene expression profiling (GEP) datasets. Knockdown (KD) of LIN28B was performed on MM cell lines (U266, MOLP-8) using 2 shRNA and validated using 2 sgRNA by CRISPR knockout (KO). Downstream regulations were assessed by qRT-PCR and western blots, as well as RNA sequencing. For RNA sequencing, control and Lin28B CRISPR cells were used for library preparation (NEBNext kit) and sequencing on a HiSeq 2000. Proliferation of KD and KO cells were evaluated in vitro and in vivo in a xenograft mouse model. An LNA-GapmeR technology was used to develop a let-7 mimic in vivo in SCID mice. Findings. Two independent GEP datasets (GSE16558; GSE2658) were analyzed for LIN28B expression, showing a significantly higher level in MM patients compared to healthy controls. In addition, high LIN28B levels correlated with a shorter overall survival (p = 0.0226), along with an enrichment of let-7 target genes by Gene Set Enrichment Analyses (GSEA). LIN28B KD cells had a significantly increased expression level of let-7 family members and were associated with down-regulation of let-7 target genes Myc and Ras at the protein level. We further confirmed downstream regulation of MYC and RAS in a LIN28B CRISPR KO model in MM cells (MOPL-8). We next validated the role of LIN28B in MM in vivo by using a xenograft tumor model showing a decreased tumor burden in LIN28B KD mice compared to scramble control (p =0.0045). In addition, we performed a RNA sequencing from the CRISPR LIN28B KO and control cells and observed a central role by GSEA for both MYC and E2F cell cycle pathways in LIN28B-engineered cells. LIN28B activity in regulating MYC and cell proliferation was further defined to be dependent on let-7 by performing a rescue experiment in MM1S cells. Moreover, we explored the possibility to therapeutically regulate MYC expression through let-7 with an LNA-GapmeR containing a let-7b mimic, in vivo, and showed that high levels of let-7 expression represses tumor growth in SCID mice by regulating MYC expression compared to control GapmeR treated mice (p = 0.0026). Conclusions. These findings reveal the essential role of LIN28B/let-7 in regulating two essential oncogenic pathways in MM, MYC and RAS. Interference with this pathway may represent an efficient option for targeting MYC in cancer. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 841-841
Author(s):  
Yang Yang ◽  
Joseph P. Ritchie ◽  
Larry J. Suva ◽  
Ralph D. Sanderson

Abstract Heparanase, an enzyme that cleaves the heparan sulfate chains of proteoglycans, is upregulated in many human tumors including multiple myeloma. We have shown previously using animal models that heparanase promotes robust myeloma tumor growth and spontaneous metastasis to bone. In the present study, the role of heparanase in promoting myeloma bone disease was investigated. CAG human myeloma cells expressing either high or low levels of heparanase (heparanase-high or heparanase-low cells) were directly injected into the marrow cavity of human fetal long bones implanted subcutaneously in SCID mice (SCID-hu model). A second, non-injected human fetal bone was implanted on the contralateral side. Seven weeks after injection of myeloma cells into the primary bone, mice were euthanized and the osteolytic disease of both implanted bones was evaluated. Both X-ray and microCT analysis revealed marked osteolysis in the primary bones injected with heparanase-high cells, with little osteolytic disease detected in the bones injected with heparanase-low cells. Surprisingly, the non-injected, contralateral bones of the animals bearing heparanase-high tumors were also extensively degraded. Immunohistolochemical analysis of these contralateral bones revealed that osteolysis occurred in the absence of detectable tumor cells in the bone. Consistent with this osteolytic phenotype, TRAP staining of the primary and contralateral human bones harvested from mice bearing heparanase-high tumors showed a significant increase in osteoclast numbers, as compared to bones harvested from animals bearing heparanase-low tumors. In a second approach using heparanase-high or heparanase-low cells injected into the tibia of SCID mice, heparanase again enhanced osteolysis at the site of tumor injection as well as at distal sites, in the absence of resident tumor cells. These findings parallel our previously published observation that heparanase expressing breast cancer cells implanted in the mammary fat pad induced an increase in bone resorption in the absence of tumor cells within bone. The evidence in vivo suggested the release from heparanase-high cells of factor(s) that increase osteoclast formation. To test this idea, in vitro osteoclastogenesis assays were used to test the conditioned medium from heparanase-high cells. The conditioned medium from heparanase-high cells significantly enhanced osteoclastogenesis compared to conditioned medium from heparanase-low cells. Interestingly, conditioned medium derived from CAG cells expressing heparanase mutants lacking enzymatic activity failed to enhance osteoclastogenesis. Together, these data demonstrate for the first time that expression of heparanase is a major determinant of the osteolytic phenotype in myeloma. Increased osteolysis is the result of increased osteoclastogenesis that requires active heparanase enzyme and can occur in bones distal to the primary tumor prior to any subsequent metastasis. Thus, we hypothesize that therapies designed to block heparanase function will not only inhibit tumor growth, but may also protect bone from tumor-related bone destruction and possibly disrupt the metastasis of tumor to bone.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 3179-3186 ◽  
Author(s):  
Shuji Ozaki ◽  
Masaaki Kosaka ◽  
Shingo Wakatsuki ◽  
Masahiro Abe ◽  
Yasuo Koishihara ◽  
...  

Abstract Multiple myeloma remains an incurable malignancy because of marked resistance of tumor cells to conventional chemotherapeutic agents. Alternative strategies are needed to solve these problems. To develop a new strategy, we have generated a monoclonal antibody (MoAb), which detects a human plasma cell-specific antigen, HM1.24. In this report, we evaluated the in vivo antitumor effect of unconjugated anti-HM1.24 MoAb on human myeloma xenografts implanted into severe combined immunodeficiency (SCID) mice. Two models of disseminated or localized tumors were established in SCID mice by either intravenous or subcutaneous injection of human myeloma cell lines, ARH-77 and RPMI 8226. When mice were treated with a single intraperitoneal injection of anti-HM1.24 MoAb 1 day after tumor inoculation, the development of disseminated myeloma was completely inhibited. In mice bearing advanced tumors, multiple injections of anti-HM1.24 MoAb reduced the tumor size and significantly prolonged survival, including tumor cure, in a dose-dependent manner. The proliferation of cultured human myeloma cells was inhibited in vitro by anti-HM1.24 IgG-mediated complement-dependent cytotoxicity, but not by the antibody alone. Moreover, spleen cells from SCID mice mediated antibody-dependent cell cytotoxicity against RPMI 8226 cells. These results indicate that anti-HM1.24 MoAb can be used for immunotherapy of multiple myeloma and related plasma cell dyscrasias.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 209-209 ◽  
Author(s):  
James Berenson ◽  
H. Yang ◽  
R. Swift ◽  
K. Sadler ◽  
R. Vescio ◽  
...  

Abstract Introduction: Bortezomib (VELCADE®) is a proteasome inhibitor that has demonstrated durable responses as monotherapy for the treatment of pts with relapsed and refractory multiple myeloma. In vitro, bortezomib has been shown to restore melphalan sensitivity to melphalan-resistant cell lines (U266-LR7) and to synergize with melphalan in killing myeloma cells, thereby allowing the use of lower concentrations of melphalan (Ma et al, Clin Cancer Res.2003;9:1136). The objective of this dose-escalation phase I/II study was to determine an optimal dose of combination bortezomib + melphalan, starting with doses below those usually recommended for each agent for pts with refractory or relapsed multiple myeloma. Dose limiting toxicities, safety, tolerability, and activity were assesed in a dose-escalation study. Methods : Bortezomib 0.7 mg/m2 was administered by IV push on days 1, 4, 8, and 11 in combination with oral melphalan (0.025, 0.05, 0.1, 0.15, 0.25 mg/kg) on days 1–4 every 4 weeks for up to 8 cycles to 3-pt cohorts with active progressive disease. In the absence of dose-limiting toxicity (DLT), bortezomib was increased to 1.0 mg/m2 and melphalan co-administered using the original 5 escalating doses to subsequent cohorts. Results : Twenty six pts (50% male, median age 55 years, range 33–90 years) have been accrued to the study. The myeloma subtypes include IgG (16/26), IgA (4/26), IgM (2/26) and light chain only (4/26). The median ß2 microglobulin level was 5.0 mg/L (range 2.2–14 mg/L). In this heavily pretreated population (range 2–7 prior therapies), 12 patients received prior melphalan, 12 prior thalidomide, 7 prior CC-5013, 13 prior VAD, 2 prior bortezomib, and 8 prior autologous stem cell transplantation. Dose escalation has proceeded into the bortezomib 1.0 mg/m2 + melphalan 0.10 mg/kg cohort. Toxicities have been manageable. One DLT, grade 4 anemia, was observed at bortezomib 1.0 mg/m2 + melphalan 0.025 mg/kg, requiring expansion of that specific cohort. Grade 3 events were predominantly associated with myelosuppression (anemia, neutropenia, and thrombocytopenia) and were observed only among pts with baseline cytopenia. Among the 12 pts with baseline peripheral neuropathy (PN), symptoms worsened transiently in 1 pt, resolved in 1 pt, and remained stable in the other pts. Treatment-related PN (grade 1) developed de novo in 2 pts. Responses were observed in 67% (16/24 evaluable) of pts: 1 CR, 1 near CR, 6 PR, and 8 MR. The CR and near CR occurred in pts receiving bortezomib 1.0 mg/m2 in combination with melphalan .025 mg/kg. PR or better was independent of prior type of therapy and was also observed among pts who had previously received melphalan or bortezomib. Median time to progression was 1-18 mo. Six active pts out of 26 total pts remain progression-free for 2-8+ mo. Conclusion : Combination bortezomib plus oral melphalan is a promising regimen for the treatment of relapsed, refractory myeloma. The responses that were observed in pts who had previously received either drug serve as preliminary confirmation of preclinical evidence that the combination of low-dose bortezomib and melphalan has the capacity for chemosensitization and suggest possible synergy. Dose escalation with melphalan plus a fixed dose of bortezomib 1.0 mg/m2 is continuing in order to explore the full potential of this combination.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1718-1718 ◽  
Author(s):  
Toshihiko Ishii ◽  
Asher Alban Chanan-Khan ◽  
Jazur Jafferjee ◽  
Noreen Ersing ◽  
Takeshi Takahashi ◽  
...  

Abstract BIW-8962 is a humanized anti-ganglioside GM2 (GM2) monoclonal antibody, produced by Poteligent technology to enhance ADCC activity. GM2 is expressed on many cancer cells including multiple myeloma (MM), small cell lung cancer and glioma cells. In this study, we evaluated the anti-myeloma activity of BIW-8962 in preclinical myeloma models both in vitro and in vivo. Expression of GM2 was analyzed in 15 human MM cell lines by FCM. Eleven out of 15 MM cell lines had positive surface expression of GM2. GM2 as a potential target was then verified in primary MM samples obtained from patients. Eleven out of 15 samples were positive for GM2. We then used two GM2 positive MM cell lines (U266B1 and KMS-11) and evaluated ADCC and CDC activity of BIW-8962 in vitro. BIW-8962 exhibited a potent ADCC and less potent CDC activity. In vivo anti-tumor activity of BIW-8962 was then examined using the standard subcutaneous xenograft model; KMS-11 was inoculated in the flank of SCID mice. BIW-8962 (intravenously administered biweekly for 3 weeks) exhibited a potent anti-tumor activity from as low a dose level as 0.1 mg/kg. Furthermore, in a more clinically relevant model, in which OPM-2/GFP (GM2 positive MM cell line) cells were intravenously inoculated into SCID mice with preferentially tumor growth within the bone marrow microenvironment, BIW-8962 (intravenously administered biweekly for 4 weeks, 10 mg/kg) suppressed OPM-2/GFP cell growth and serum M protein elevation, demonstrating in vivo anti-myeloma effect of BIW-8962. Our preclinical investigations rationalize clinical evaluation of BIW-8962 in patients with MM. Currently BIW-8962 is being investigated in a Phase 1 study in patients with multiple myeloma.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1875-1875
Author(s):  
Colin Hutchison ◽  
Parisa Airia ◽  
Mark Cook ◽  
Daniel Grima

Abstract Abstract 1875 Poster Board I-900 Study purpose: To explore how free light chain (FLC) removal by high cut-off haemodialysis (HCO-HD) has been adopted into clinical practice for the management of renal failure secondary to multiple myeloma. Describing treatment patterns and the laboratory and clinical outcomes associated with its use. Methods: A chart audit of patients treated with FLC removal by HCO-HD, using the Gambro HCO 1100 dialyser, was performed in 16 dialysis centers across 9 countries. Patient demographics, treatment patterns and dialysis side-effects were recorded. In addition, the following outcomes were measured: dialysis independence and reductions in serum FLCs concentrations at 12 and 21 days. Results: Data for 66 patients was entered. Patients had an average age of 65.1 (SD×10.1); 42 of them (63.64%) were male and 24 (36.36%) were female. Sixteen (24%) presented with relapsing myeloma and 50 (76%) had de novo disease. On average, each patient received 13 HCO-HD sessions (SD×8). Forty-one patients became dialysis independent (62.12%), after an average of 12 sessions. Dialysis related side-effects were reported in 6% of all patients. Forty patients (60.61%) were reported to have a sustained reduction in serum FLC concentrations by day 12. By day 21 this had increased to forty-one (62.12%). Among the patients who achieved a sustained reduction in serum FLC concentrations, 28 (70%) had a decline in FLC levels of more than 50% by day 12 and 34 (82.93%) by day 21. Among patients who achieved sustained reduction of more than 50% in serum FLC concentrations by day 12, 75% became dialysis independent. In comparison only 53% of those with a reduction of less than 50% became dialysis independent (p×0.007). Furthermore, among patients who achieved sustained FLC reduction of greater than 75%, 81% became dialysis independent. The rate of dialysis independence was also significantly higher in patients with de novo disease compared with those with relapsing myeloma (64% versus 56%, p×0.04). Conclusion: Free light chain removal by HCO-HD was well tolerated and associated with a very high rate of dialysis independence in patients with renal failure secondary to multiple myeloma. Rates of renal recovery were greater in patients with de novo myeloma and those who achieved an early reduction in serum FLC concentrations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1656-1656
Author(s):  
Xuefang Cao ◽  
Karen Leonard

Abstract Abstract 1656 Poster Board I-682 To study the roles of IL-12 and Interferon-gamma (IFNg) in tumor immunity, we used RMAS lymphoma cells to challenge IL-12 receptor beta 2-deficient (IL-12Rb2-/-) and IFNg receptor 1-deficient (IFNgR1-/-) mice that are in the syngeneic C57BL/6J background. We intravenously injected mice with a dose of 1 × 104 RMAS cells that caused death in about 50% of wild-type (WT) mice. As shown in the Figure below, all of the WT mice treated with exogenous IL-12 were rescued from death caused by tumor growth; endogenous IL-12 was not sufficient to impact tumor growth since IL-12Rb2-/- mice showed a survival rate similar to that of WT mice. However, all of the IFNgR1-/- mice succumbed to tumor growth, indicating that endogenous IFNg is required for tumor immunity in this system. Furthermore, IL-12 treatment did not improve the survival of the IFNgR1-/- mice, suggesting that IFNg signaling is required for IL-12's anti-tumor effect. We previously showed that an IL-12/IFNg axis can inhibit tumor-induced regulatory T cell (Treg) proliferation in vitro (Cao et al, 2008 ASH Annual Meeting). We have subsequently examined their effects on Treg cells in vivo. Compared to naive mice, significant Treg expansion (4.9 ± 2.1 fold, n=5, p=0.025) was observed in the peritoneal cavity of WT mice within 2 weeks after an intraperitoneal injection of 1 × 104 RMAS cells. This expansion was completely blocked by treatment with exogenous IL-12. Treg cells in the IL-12Rb2-/- mice expanded to levels comparable to that in WT animals, suggesting that endogenous IL-12 was not sufficient to control Treg expansion. In contrast, significantly higher Treg expansion was observed in IFNgR1-/- mice (36.8 ± 11.8 fold, n=5, p=0.002), which was partially inhibited by IL-12 treatment (13.2 ± 3.5 fold, n=5, p=0.002), suggesting that an IFNg-independent mechanism may also account for IL-12's anti-Treg effect. To further study the effects of IL-12 and IFNg on cytotoxic T lymphocyte (CTL) function, we performed mixed lymphocyte reactions (MLR) and used flow-based killing assays (FloKA) to measure cell contact-dependent killing of allogeneic P815 tumor cells. MLR-activated CTLs were found to kill tumor targets via perforin/granzyme-mediated cytotoxicity. At a 10:1 (effector:target) ratio, granzyme AxB-deficient CTLs and perforin-deficient CTLs displayed significantly reduced killing (8.6 ± 1.2% and 4.5 ± 0.9%, respectively) compared to WT CTLs (36.1 ± 3.5%). IL-12 supplement (2ng/ml) to the MLR significantly increased the killing activity of WT CTLs (65.3 ± 4.2%), but had no significant effect on granzyme AxB-deficient CTLs or perforin-deficient CTLs. In contrast, IFNg supplement (10ng/ml) to the MLR had no significant effect on the killing activity of CTLs. Conversely, MLR-activated IFNgR1-/- CTLs killed P815 cells as efficiently as WT CTLs and responded to IL-12 treatment as efficiently as WT CTLs. Taken together, these data suggest that IL-12 treatment inhibits tumor-induced Treg expansion and stimulates IFNg-dependent anti-tumor immune responses. In addition, IL-12 also activates perforin/granzyme-dependent function of cytotoxic T lymphocytes. These differential effects on diverse immune components may collectively result in enhanced tumor immunity. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document