scholarly journals Comparison of Two Rapid Predictive Methods for Therapeutic Targeting in Acute Myeloid Leukaemia Cells

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1704-1704
Author(s):  
Martin Grundy ◽  
Jones Thomas ◽  
Liban Elmi ◽  
Michael Hall ◽  
Nigel H Russell ◽  
...  

Abstract Background. AML blasts from different patients vary in the agents to which they are most responsive. With a plethora of novel agents to evaluate, there is a lack of predictive biomarkers to precisely assign targeted therapies to individual patients. Primary AML cells often survive poorly in vitro, thus confounding conventional cytotoxicity assays. Dynamic profiling, i.e. functional biomarker assays of responsiveness to chemotherapeutic agents, is an alternative approach to help further the move towards personalised therapy. The purpose of this work was to assess the potential of two same-day dynamic profiling assays in AML cell lines to predict response to chemotherapy. (i) Ribosomal protein S6 (rpS6) is a downstream substrate of PI3K/akt/mTOR/ p70S6 kinase and MAPK/p90S6 kinase pathways and is also dephosphorylated following DNA double strand breaks. It thus has the potential to function as a biomarker of responsiveness to several therapeutic agents. (ii) Cellular propensity for apoptosis can be interrogated via a functional assay termed BH3 profiling. Dynamic BH3 profiling can be used to predict cellular responses to therapy based on priming mitochondria with BH3 domain peptides and thus allowing early detection of pro-apoptotic drug effects on mitochondrial outer membrane permeabilisation. Methods.We measured effects of a short (four hour) incubation with drugs of interest on rpS6 phosphorylation and BH3 peptide-accelerated cytochrome C release by flow cytometry. Baseline rpS6 phosphorylation was determined by culture with the mTOR inhibitor Rapamycin and the MEK inhibitor U0126. BH3 profiling included permeabilisation with digitonin followed by mitochondrial exposure to PUMA BH3-derived peptide. To establish specificity for sensitive cells we also measured dose responses to the drugs in 12 diverse AML cell lines after 48 hours' culture. Results. RpS6 dephosphorylation at four hours closely predicted the 48 hour IC50 for FLT3 inhibitors, an hsp90 inhibitor and topoisomerase II inhibitors. ROC (predictive test) analysis of small molecule inhibitors showed that the assay was highly sensitive and specific with area under the curve (AUC) values of 1.0 (sorafenib), 1.0 (AC220) and 1.0 (17-AAG). RpS6 phosphorylation also predicted response to the double strand break inducing drugs, with AUC values of 1.0 (mylotarg), 0.83 (etoposide) and 0.82 (vosaroxin). In contrast, responses to cytarabine and ABT-199, likely independent of mTOR, MAPK or double strand break response pathways, are not predicted by rpS6 dephosphorylation. PUMA-BH3 peptide-induced cytochrome C release also closely predicted the 48 hour IC50 with AUC values for FLT3 inhibitors of 1.0 (sorafenib) and 1.0 (AC220), double strand break inducing drugs 1.0 (mylotarg), 1.0 (etoposide) and 1.0 (vosaroxin) and a Bcl-2 targeting agent 0.875 (ABT-199). Response to 17-AAG and cytarabine were not predicted by this assay. Preliminary analysis shows that differential responses within primary AML sample subsets can be interrogated with these methodologies. Conclusions. In conclusion, we have established that rpS6 dephosphorylation and/or PUMA-BH3 peptide-induced cytochrome C release predict chemoresponsiveness to tyrosine kinase inhibitors, topoisomerase II inhibitors, an hsp90 inhibitor and a Bcl-2 targeting agent in AML cell lines after short term culture. Both assays are sensitive, specific and amenable to leukaemic sub-population analysis and are thus suitable assays for further development towards use in a clinical setting. pRS6 can be performed on smaller samples and is less technically challenging than priming with PUMA-BH3 peptide, but does not take into account apoptosis resistance that may occur independently of pathways effecting pRS6 inhibition. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 655-663 ◽  
Author(s):  
Joya Chandra ◽  
Emma Mansson ◽  
Vladimir Gogvadze ◽  
Scott H. Kaufmann ◽  
Freidoun Albertioni ◽  
...  

Abstract The purine nucleoside 2-chlorodeoxyadenosine (CdA) is often used in leukemia therapy. Its efficacy, however, is compromised by the emergence of resistant cells. In the present study, 3 CdA-resistant cell lines were generated and characterized. Their ability to accumulate 2-chloroadenosine triphosphate (CdATP) varied, reflecting differences in activities of deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK). Nonetheless, the selected lines were uniformly resistant to CdA-induced apoptosis, as assessed by caspase activation and DNA fragmentation. In contrast, cytosols from resistant cells were capable of robust caspase activation when incubated in the presence of cytochrome c and dATP. Moreover, replacement of dATP with CdATP also resulted in caspase activation in the parental and some of the resistant cell lines. Strikingly, CdA-induced decreases in mitochondrial transmembrane potential and release of cytochrome c from mitochondria were observed in the parental cells but not in any resistant lines. The lack of cytochrome c release correlated with an increased ability of mitochondria from resistant cells to sequester free Ca2+. Consistent with this enhanced Ca2+buffering capacity, an early increase in cytosolic Ca2+after CdA treatment of parental cells but not resistant cells was detected. Furthermore, CdA-resistant cells were selectively cross-resistant to thapsigargin but not to staurosporine- or Fas-induced apoptosis. In addition, CdA-induced caspase-3 activation and DNA fragmentation were inhibited by the Ca2+ chelator BAPTA-AM in sensitive cells. Taken together, the data indicate that the mechanism of resistance to CdA may be dictated by changes in Ca2+-sensitive mitochondrial events.


2016 ◽  
Vol 92 (11) ◽  
pp. 724-732 ◽  
Author(s):  
Masanori Tomita ◽  
Munetoshi Maeda ◽  
Noriko Usami ◽  
Akinari Yokoya ◽  
Ritsuko Watanabe ◽  
...  

1993 ◽  
Vol 134 (3) ◽  
pp. 307 ◽  
Author(s):  
Helen H. Evans ◽  
Marlene Ricanati ◽  
Min-Fen Horng ◽  
Qiaoyun Jiang ◽  
Jaroslav Mencl ◽  
...  

Author(s):  
Nicole Stantial ◽  
Anna Rogojina ◽  
Matthew Gilbertson ◽  
Yilun Sun ◽  
Hannah Miles ◽  
...  

ABSTRACTTopoisomerase II (Top2) is an essential enzyme that resolves catenanes between sister chromatids as well as supercoils associated with the over- or under-winding of duplex DNA. Top2 alters DNA topology by making a double-strand break (DSB) in DNA and passing an intact duplex through the break. Each component monomer of the Top2 homodimer nicks one of the DNA strands and forms a covalent phosphotyrosyl bond with the 5’ end. Stabilization of this intermediate by chemotherapeutic drugs such as etoposide leads to persistent and potentially toxic DSBs. We describe the isolation of a yeast top2 mutant (top2- F1025Y,R1128G) whose product generates a stabilized cleavage intermediate in vitro. In yeast cells, overexpression of the top2- F1025Y,R1128G allele is associated with a novel mutation signature that is characterized by de novo duplications of DNA sequence that depend on the nonhomologous end-joining pathway of DSB repair. Top2-associated duplications are promoted by the clean removal of the enzyme from DNA ends and are suppressed when the protein is removed as part of an oligonucleotide. TOP2 cells treated with etoposide exhibit the same mutation signature, as do cells that over-express the wild-type protein. These results have implications for genome evolution and are relevant to the clinical use of chemotherapeutic drugs that target Top2.SIGNIFICANCE STATEMENTDNA-strand separation during transcription and replication creates topological problems that are resolved by topoisomerases. These enzymes nick DNA strands to allow strand passage and then reseal the broken DNA to restore its integrity. Topoisomerase II (Top2) nicks complementary DNA strands to create double-strand break (DSBs) intermediates that can be stabilized by chemotherapeutic drugs and are toxic if not repaired. We identified a mutant form of yeast Top2 that forms stabilized cleavage intermediates in the absence of drugs. Over- expression of the mutant Top2 was associated with a unique mutation signature in which small (1-4 bp), unique segments of DNA were duplicated. These de novo duplications required the nonhomologous end-joining pathway of DSB repair, and their Top2-dependence has clinical and evolutionary implications.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3870-3870
Author(s):  
Qi Zhang ◽  
Sajid Khan ◽  
Xuan Zhang ◽  
Vinitha Mary Kuruvilla ◽  
Sanaz Ghotbaldini ◽  
...  

T-ALL is an aggressive hematologic malignancy arising from immature T-cell precursors. Previous studies identified dependence of T-ALL (with a notable exception of early T-cell precursor (ETP) ALL) on BCL-XL (Chonghaile, Cancer Discovery 2014; Khaw, Blood 2016). However, BCL-XL specific inhibitors exhibit on-target toxicity of thrombocytopenia, restricting the use in acute leukemias (Vogler, Blood 2011). DT2216, a novel BCL-XL specific proteolysis targeting chimera (PROTAC), targets BCL-XL to the Von Hippel-Lindau (VHL) E3 ligase, leading to BCL-XL ubiquitination and degradation selectively in cells express VHL (Khan, ASH 2018). Platelets lack VHL expression and therefore are spared from destruction by DT2216. Here we studied the pre-clinical efficacy of DT2216 in T-ALL cell lines in vitroand in vivousing T-ALL patient-derived xenograft (PDX) models. We first analyzed anti-apoptotic proteins (BCL-XL, BCL-2, MCL-1) expression in 4 B-ALL (LAZX2, MUTZ5, RS4:11, BALL1) and 6 T-ALL cell lines (SUPT1, KOPT1, Loucy, CCRF-CEM, PF384, Jurkat) by immunoblotting. This analysis demonstrated that ALL cell lines generally co-express BCL-XL and BCL-2 (Figure 1A). To identify functional dependencies, we utilized BH3 profiling that measures cytochrome C release after priming cells with BH3 peptides selectively targeting pro-survival BCL-2 family proteins in 4 B-ALL and 3 T-ALL cell lines. Similarly, cells were co-dependent on several anti-apoptotic members as shown by higher cytochrome c release in response to BIM, BID and BMF peptides targeting multiple anti-apoptotic proteins, and lower response to FS-1, ABT-199, HRK, MS-1, targeting individual anti-apoptotic members (Figure 1B). Analysis of the 3 B-ALL and 3 T-ALL PDX lines identified similar patterns that ALL cells are co-dependent on several anti-apoptotic members. Notably, we observed high cytochrome C release in response to mBAD that targets BCL-2 and BCL-XL; in addition, two of the three T-ALL PDXs, but none B-ALL PDX, responded to BCL-XL specific peptide HRK and to DT2216 confirming a functional role of BCL-XL in T-ALL survival. Next, we studied the sensitivity of ALL cells to ABT-199, DT2216 and the combination, in comparison with dual BCL-2/BCL-XL inhibitor ABT-263. DT2216 treatment (24hrs) caused a dose-dependent reduction of cellular viability in all 6 T -ALL and 3 B-ALL lines (except for BALL1 with complex karyotype refractory to all agents) measured by Cell TiterGlo assay, with T-ALL cells demonstrating a log higher sensitivity compared to B-ALL. In contrast, 5 out of 6 T-ALL lines (all besides ETP line Loucy) had no response to ABT-199, while 3 B-ALL lines showed dose-dependent response. All lines except BALL1 responded to ABT-263 (Figure 1C). Notably, the combination of DT2216 with ABT-199 synergistically reduced cell viability, with average CI of 0.3 (range 0.1-0.7 in all lines besides BALL1) (Figure 1D). Immunoblotting of DT2216 treated cells confirmed dose-dependent, on-target BCL-XL degradation as early as 6 hrs (Figure 1E). We next tested the therapeutic efficacy of DT2216 alone or combined with chemotherapy in T-ALL PDX models. NSG mice were engrafted with T-ALL PDX CU76 and D115. After documenting bone marrow (BM) engraftment by flow cytometry in BM aspirates on Day 14 post cell injection, mice were randomized to receive vehicle, chemotherapy ("VDL", VCR 0.15mg/kg, Dexa 5mg/kg, L-ASP 1000U/kg, ip., qw), DT2216 (15mg/kg, ip., q4d) or their combination for 3 weeks. Mice tolerated DT2216 therapy well, with no platelet toxicity by whole blood count 24hrs post the first and last DT2216 dosing. DT2216 reduced leukemia burden, delayed leukemia progression (Fig 1G) and significantly extended mice survival in both models. VDL chemotherapy had no effect on ALL progression in CU76 model and showed efficacy similar to DT2216 in D115 model; of importance, VDL+ DT2216 combination resulted in significant extension of survival in both chemoresistant and chemosensitive models (Figure 1F). In summary, T-ALL cells are functionally dependent on BCL-XL for survival and are highly sensitive to DT2216, while B-ALL are largely BCL-2 dependent and respond to BCL-2 inhibitors such as ABT-199. DT2216 alone and in particular when combined with chemotherapy reduced leukemia burden and prolonged survival in T-ALL PDX models. This study suggests targeting BCL-XL by DT2216 represents highly effective and safe adjunct therapeutic modality in T-ALL. Disclosures Zhang: The University of Texas M.D.Anderson Cancer Center: Employment. Zhang:University of Arkansas for Medical Sciences: Patents & Royalties: inventor of a pending patent application for use of Bcl-xl PROTACs as anti-cancer agents. Kuruvilla:The University of Texas M.D.Anderson Cancer Center: Employment. Ghotbaldini:CPRIT Research Grant: Research Funding. Zheng:Dialectic Therapeutics: Equity Ownership, Other: Co-founders of Dialectic Therapeutics that develops Bcl-xl PROTACs as anti-cancer agents; University of Arkansas for Medical Sciences: Patents & Royalties: inventor of a pending patent application for use of Bcl-xl PROTACs as anti-cancer and anti-aging agents. Zhou:University of Arkansas for Medical Sciences: Patents & Royalties: inventor of a pending patent application for use of Bcl-xl PROTACs as anti-cancer and anti-aging agents; Unity Biotechnology: Equity Ownership, Other: Co-founder of Unity Biotechnology which develops small-molecule senolytic drugs; Dialectic Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: co-founders of Dialectic Therapeutics that develops Bcl-xl PROTACs as anti-cancer agents. Konopleva:Ascentage: Research Funding; Kisoji: Consultancy, Honoraria; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Ablynx: Research Funding; Eli Lilly: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Genentech: Honoraria, Research Funding; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Forty-Seven: Consultancy, Honoraria; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; Calithera: Research Funding; Astra Zeneca: Research Funding; Agios: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document