scholarly journals FOXO1 Is Involved in the Regulation of B-Cell Precursor Acute Lymphoblastic Leukemia Survival and Serves As a Novel Target for Directed Therapy

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4020-4020
Author(s):  
Salih Demir ◽  
Fan Wang ◽  
Franziska Gehringer ◽  
Clarissa Weitzer ◽  
Klaus-Michael Debatin ◽  
...  

Abstract Acute lymphoblastic leukemia (ALL) is the most common pediatric and adolescent malignancy. Although current treatment provides five-year event-free survival, in up to 20% conventional chemotherapy fails resulting in relapse with inferior prognosis. FOXO1 is a member of the forkhead family of transcription factors, which is preferably expressed in B-cells with high expression at the early B-cell stage. FOXOs are involved in several cellular processes including cell death and proliferation, anti-cancer drug resistance and protection from oxidative stress. Since FOXO1 can enhance tumor growth and potentiate metastasis, we aimed to investigate the effects of FOXO1 inactivation on B-cell precursor (BCP)-ALL, including preclinical in vivo evaluation. FOXO1 expression levels were compared among 497 cancer samples using the Genevestigator online software. Expression of FOXO1 in BCP-ALL was significantly higher than in any of the other cancer types. Next, we investigated FOXO1 expression and subcellular localization in 3 BCP-ALL cell lines by cellular fractionation and fluorescent microscopy. Both methods showed localization of FOXO1 in the nucleus, indicating transcriptionally active FOXO1 in BCP-ALL. In order to study the potential anti-tumor effect of FOXO1 repression, we investigated genetically modified, FOXO1 deficient BCP-ALL cell lines (n=5) and observed no cell death induction in control transduced cells, in contrast to a clear reduction of cell viability of up to 80% upon FOXO1 knock-down, clearly indicating dependency of BCP-ALL cells on FOXO1. Moreover, lentiviral mediated FOXO1 knockdown did not induce cell death in the Hodgkin's lymphoma cell line cHL, suggesting a BCP-ALL specific importance for FOXO1. Based on these results indicating the importance of FOXO1 expression for BCP-ALL maintenance, we investigated the feasibility of pharmacological interference with FOXO1. Exposure of 7 BCP-ALL, 4 T-ALL, 3 B-cell NHL, 2 DLBCL and 3 cHL cell lines to the small molecular weight FOXO1 inhibitor AS1842856 showed effectivity in BCP-ALL lines, reflected by significantly higher half maximal inhibitory concentrations (IC50) by MTT test. The most sensitive cell line was the BCP-ALL line RS4;11, while the cHL cell line SUP-HD1 showed insensitivity for FOXO1 inhibition (IC50: 3 nM and 26 µM), again indicating that BCP-ALL is particularly dependent on FOXO1 activity. Caspase 3 cleavage detected upon exposure to AS1842856 showed induction of apoptosis as mechanism of cell death. Furthermore, we evaluated the sensitivity of primary BCP-ALL primograft samples (n=9) exposing the ALL cells to increasing pharmacologically relevant concentrations of AS1842856. The inhibitor increased cell death as measured by flow cytometry (FSC/SSC criteria) in all of the samples tested in a time and dose dependent manner. Importantly, FOXO1 inhibition also showed activity on high risk leukemias including MLL-rearranged and early or second-relapse cases. Moreover, we investigated the in vivo effectivity of AS1842856. Two different patient derived leukemias were transplanted onto NOD/SCID mice and upon leukemia manifestation vehicle or AS1842856 was administered for a time of 11 days. At the end of the experiment, all mice were sacrificed and tumor loads were quantified in spleen, bone marrow and central nervous system (CNS). Importantly, tumor loads of all compartments and spleen sizes were significantly reduced in AS1842856 treated animals (p=0.028, U-test). Moreover, in an early-relapse sample leukemia-free survival upon AS1842856 treatment was evaluated. Mice were treated by vehicle or AS1842856 (n=10/group) during 11 days. Leukemia-free survival was significantly prolonged in mice which received AS1842856 (p=0.003, Log-rank test). Taken together, we show that the active form of FOXO1 is highly expressed in BCP-ALL cells as compared to other cancers, and that viability of BCP-ALL cells is regulated by FOXO1 activity. Importantly, silencing or pharmacological inhibition of FOXO1 induces cell death in BCP-ALL primogafts including high risk cases, both ex vivo and preclinically in vivo. Thus, targeting FOXO1 provides a promising novel strategy for therapeutic intervention in these high-risk subtypes of BCP-ALL. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1416-1416
Author(s):  
Felix Seyfried ◽  
Felix Stirnweiß ◽  
Stefan Köhrer ◽  
Klaus-Michael Debatin ◽  
Lüder Hinrich Meyer

Abstract Deregulated cell death and survival pathways contribute to leukemogenesis and treatment failure of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) patients. The intrinsic apoptosis pathway is regulated at the mitochondrial level by different pro- and anti-apoptotic molecules. Members of the BCL-2 family are key regulators of mitochondrial apoptosis signaling. Pro-apoptotic BH3-only proteins like BIM and BID activate pro-death proteins such as BAX and BAK leading to cell death. Anti-apoptotic BCL-2 family members including BCL-2, BCL-XL and MCL-1 bind to and sequester pro-apoptotic molecules, prevent activation of pro-death proteins and counter-regulate apoptosis induction. Small molecule inhibitors have been developed that block binding to anti-apoptotic molecules like BCL-2, leading to release of pro-apoptotic proteins and cell death induction. In particular, the BCL-2-specific inhibitor venetoclax (VEN) has demonstrated substantial anti-cancer activity and became an approved drug for the treatment of CLL patients. Investigating different, individual BCP-ALL samples, we and others recently identified heterogeneous sensitivities for VEN, suggesting that BCP-ALL cells might also depend on other pro-survival BCL-2 family proteins including MCL-1, leading to VEN insensitivity and resistance. A novel BH3-mimetic, S63845, that selectively targets MCL-1 has been reported. Here, we assessed the activity of S63845 and addressed a potential synergism of simultaneous blockage of BCL-2 and MCL-1 by VEN and S63845 (S) in BCP-ALL. The activity of the MCL-1 inhibitor was analyzed in a panel of BCP-ALL cell lines (N=6) and a series of primary, patient-derived BCP-ALL primograft samples (N=27) determining half-maximal effective concentrations (EC50) upon exposure to increasing concentrations of S and analysis of cell death induction. We observed heterogeneous sensitivities to S with EC50 values ranging from 16 nM to almost 10 µM. Protein expression of MCL-1 and other BCL-2 family members BCL-2, BCL-XL and BCL-W was assessed by western blot analysis and quantified, however neither association of MCL-1 levels nor expression of the other regulators and S sensitivity was found in cell lines and primograft leukemias. Moreover, we also compared sensitivities for both inhibitors but found independent activities of S and VEN in individual ALL samples. Next, we addressed the role of MCL-1 for VEN sensitivity and generated two MCL-1 knock out BCP-ALL cell lines by CRISPR/Cas9 gene editing. In both lines, clearly increased VEN sensitivities were observed upon depletion of MCL-1, indicating that MCL-1 is contributing to activity of the BCL-2 inhibitor VEN. Based on these findings, we investigated the effects of pharmacological MCL-1 inhibition for VEN sensitivity and incubated all 6 cell lines with VEN and S at increasing concentrations and observed clear synergistic effects upon combined BCL-2 and MCL-1 inhibition indicated by combination indices (CI) below 0.1. Moreover, we investigated 7 primograft BCP-ALL samples and found that MCL-1 inhibition by S clearly synergized with VEN activity (CI < 0.3). To investigate the anti-leukemia activity of co-targeting BCL-2 and MCL-1 in vivo in a pre-clinical setting, a high-risk leukemia derived from an infant, MLL/ENL rearranged pro-B ALL case was transplanted onto NOD/SCID mice. Upon ALL manifestation (presence of >5% human blasts in blood), recipients were treated with either VEN, S, the combination of both, or vehicle for 10 days. After treatment, leukemia loads were analyzed showing significantly reduced loads in the co-treated group as compared to vehicle, VEN or S alone in spleen, bone marrow, and central nervous system (p-values < 0.05), indicating synergistic activity of co-inhibition of BCL-2 and MCL-1 in vivo. Taken together, our data show heterogeneous sensitivity of individual BCP-ALL samples to MCL-1 inhibition by S, which is not associated with MCL-1 protein expression levels or VEN sensitivity. Both, genetic depletion and inhibition of MCL-1 by S synergizes with VEN leading to increased anti-leukemia activity in vitro and ex vivo. Importantly, co-targeting BCL-2 and MCL-1 significantly reduced leukemia infiltration in spleen, BM and CNS in a pre-clinical model of high-risk BCP-ALL, warranting further evaluation and possible clinical application of targeting MCL-1 alone and in combination with BCL-2 inhibition. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1081-1081
Author(s):  
Felix Seyfried ◽  
Salih Demir ◽  
Rebecca Hörl ◽  
Stefan Köhrer ◽  
Annika Scheffold ◽  
...  

Abstract Despite superior outcome and survival of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL), relapse occurs in 10-20% and is associated with poor outcome, clearly indicating future challenges including reduction of relapse rates and effective treatment of reoccurred leukemia. Deficiencies in cell death and survival pathways have been implicated in therapy failure and treatment resistance in BCP-ALL. Members of the BCL-2 family are key regulators of these pathways and are therefore of interest as therapeutic targets. The small molecule ABT-199 binds selectively to BCL-2, inhibits its anti-apoptotic function and leads to release of pro-apoptotic molecules. Recently, ABT-199 has demonstrated clinical activity, particularly in poor prognosis CLL. However, insensitivity and resistance in different cases clearly emphasize the need of predictive markers for upfront identification of ABT-199 responsive leukemias. Here, we analyzed sensitivity for ABT-199 in a series of individual BCP-ALL samples, addressed mechanisms of resistance and evaluated markers indicating response to ABT-199. Anti-leukemic activities of ABT-199 were investigated in BCP-ALL cell lines (n=6) and patient-derived BCP-ALL primograft samples (n=17), which were established by transplantation of primary patient ALL cells obtained at diagnosis onto NOD/SCID mice. Half maximal inhibitory concentrations (IC50) for ABT-199 were analyzed for each sample. Expression of apoptosis regulating molecules was investigated by western blot analysis and associated with ABT-199 responsiveness. Two MCL-1 deficient ALL cell lines were generated by CRISPR/Cas9 gene editing. Leukemia free-survival of ALL bearing animals was analyzed after in vivoABT-199 treatment. The majority of BCP-ALL samples showed sensitivity for ABT-199 induced cell death in the nanomolar range, both in cell lines (n=4, IC50: 29 - 422 nM) and patient-derived primograft samples (n=10, IC50: 1.7 - 74 nM), while 2 cell lines and 7 primograft leukemias showed insensitivity with IC50 values above 1 µM. ABT-199 binds directly to BCL-2 and upon binding, pro-apoptotic Bcl-2 family molecules like Bim are dislocated from BCL-2 and induce apoptosis. The anti-apoptotic BCL-2 family member MCL-1 is not bound by ABT-199, but sequesters pro-apoptotic molecules dislocated from BCL-2 leading to interruption of apoptosis induction. Therefore, we addressed expression levels of BCL-2 and MCL-1. We found high BCL-2 levels in ABT-199 sensitive and low BCL-2 levels in resistant leukemia samples and an opposite pattern for MCL-1 (high in resistant and low MCL-1 in sensitive ALL), in line with previous reports. Most interestingly, a high ratio of MCL-1 to BCL-2 expression (high MCL-1, low BCL-2) was significantly associated with high IC50 values/resistance (Spearman Rho correlation, p= .01), whereas a low MCL-1/BCL-2 ratio indicated ABT-199 sensitivity. Two of the 6 cell lines showed ABT-199 resistance (IC50 > 1 µM) and high Mcl-1 expression. Effective MCL-1 knock-out in both cell lines led to a clear sensitization for ABT-199 with up to 40-fold reduced IC50 values, clearly indicating MCL-1 as a key mediator of ABT-199 resistance in BCP-ALL. Finally, we also evaluated the anti-leukemia activity of ABT-199 in a preclinical setting in vivo. Two patient-derived leukemias, one with a low MCL-1/BCL-2 ratio of 0.9 and the other with a high ratio of 16.1, indicative of ABT-199 sensitivity or resistance, were transplanted onto NOD/SCID mice and treated with ABT-199 for 10 days after ALL engraftment. Most interestingly, a significantly increased leukemia free survival was observed in ABT-199 as compared to vehicle treated recipients (p<0.001) of the leukemia with the low MCL-1/BCL-2 ratio, in contrast to similar survival times of vehicle or ABT-199 treated animals bearing the high MCL-1/BCL-2 ratio ALL, clearly showing the predictive value of BCL-2 and MCL-1 levels in BCP-ALL. Taken together, ABT-199 shows anti-leukemia activity in the majority of BCP-ALL samples, with a strong association of high BCL-2 and low MCL-1 levels with ABT-199 sensitivity. Silencing of MCL-1 clearly revealed a crucial role for MCL-1 as mediator of ABT-199 resistance. Importantly, in vivo evaluation of ABT-199 in a preclinical setting highlighted the predictive value of BCL-2/MCL-1 expression for the identification of patients who would benefit from future BCL-2 directed therapies. Disclosures Stilgenbauer: Genzyme: Consultancy, Honoraria, Other: Travel grants , Research Funding; Genentech: Consultancy, Honoraria, Other: Travel grants , Research Funding; Janssen: Consultancy, Honoraria, Other: Travel grants , Research Funding; Sanofi: Consultancy, Honoraria, Other: Travel grants , Research Funding; Hoffmann-La Roche: Consultancy, Honoraria, Other: Travel grants , Research Funding; Novartis: Consultancy, Honoraria, Other: Travel grants , Research Funding; GSK: Consultancy, Honoraria, Other: Travel grants , Research Funding; Gilead: Consultancy, Honoraria, Other: Travel grants , Research Funding; Pharmacyclics: Consultancy, Honoraria, Other: Travel grants , Research Funding; AbbVie: Consultancy, Honoraria, Other: Travel grants, Research Funding; Mundipharma: Consultancy, Honoraria, Other: Travel grants , Research Funding; Celgene: Consultancy, Honoraria, Other: Travel grants , Research Funding; Amgen: Consultancy, Honoraria, Other: Travel grants, Research Funding; Boehringer Ingelheim: Consultancy, Honoraria, Other: Travel grants , Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4461-4461
Author(s):  
Greta De Jong ◽  
Sophie E Levie ◽  
Remko Schotte ◽  
Wouter Pos ◽  
Daniel Go ◽  
...  

Despite rapid advances in immunotherapeutic options for precursor B-acute lymphoblastic leukemia (ALL), outcomes remain poor especially for adult ALL and relapsed pediatric ALL. With conventional chemotherapy, remission percentages in adult ALL range from 75 to 90%, but relapse rates are high and long-term leukemia-free survival ranges between 35-70% depending on age and risk group. The introduction of CD19 targeting immunotherapy has significantly improved patient outcomes in (relapsed) B-ALL. However, tumor escape via downregulation of CD19 occurs in a significant number of patients. Therefore an ongoing urgency remains for the identification of additional or alternative immunotherapeutic targets for the treatment of ALL. AT1412 is an antibody that was identified from the peripheral blood memory B cell pool of a patient cured of metastatic melanoma after adoptive T-cell therapy, using a B cell immortalization technology (AIMSelect) with ectopic Bcl-6 and Bcl-xL expression as described previously [Kwakkenbos et al. Nat. Med. 2010]. The antibody was selected based on differential binding to melanoma cells as compared to healthy melanocytes and was shown to be successful in killing melanoma cells in vitro and in vivo [manuscript submitted]. In addition to melanoma, AT1412 binds other tumor types including B-ALL, gastric, colon- and pancreatic cancer. The target of AT1412 is the tetraspanin CD9, which is expressed by more than half of all B-ALL. Expression of CD9 has been correlated with adverse prognosis [Liang et al. Cancer Biomark. 2018]. We assessed binding of this human CD9 antibody to a panel of ALL cell lines using flow cytometry. Binding of AT1412 to the B-ALL cell lines SUP-B15, MHH-CALL-2 and CCRF-SB varied as expected based on the CD9 levels that we detected using a commercial CD9 antibody. AT1412 induced antibody dependent cellular cytotoxicity (ADCC) on these cells, in line with the level of AT1412 binding. No binding was seen to the T-ALL cell line Jurkat. Importantly, these findings were confirmed in primary ALL samples, obtained prospectively at diagnosis from a cohort of patients with T- or B-ALL (n=30). AT1412 showed binding to 61% of B-ALL samples but not to T-ALL samples. The potential of AT1412 to induce ADCC was tested on patient samples from the same panel. Remarkably, AT1412 induced ADCC of all B-ALL samples it bound to (8 out of 14) and of none of the T-ALL samples. Cytotoxicity significantly correlated with the level of AT1412 binding. These findings were supported by the observation that AT1412 induced B-ALL cell death when a freshly drawn whole bone marrow sample from a patient with newly diagnosed B-ALL was cocultured with AT1412. AT1412-induced cell death of B-ALL blasts occurred without affecting the monocytic, granulocytic and lymphocytic populations. This cell death was not observed when this patient's ALL blasts were incubated with AML-targeting antibodies. Remarkably, AT1412 induced cell death in the absence of added effector cells or other (chemo)therapeutic agents, while the bone marrow sample contained over 80% blasts and as little as 3% lymphocytes. We are currently investigating the in vivo efficacy of the antibody in a humanized immune system mouse model with human B-ALL. Taken together, the majority of precursor B-ALL blasts express CD9 and expression of CD9 is associated with a dismal outcome. Our data demonstrate that CD9 can be successfully targeted by the human CD9 antibody AT1412, suggesting that AT1412 has the potential to be developed as a therapeutic antibody for B-ALL. AT1412 is currently being advanced through preclinical development. Disclosures De Jong: AIMM Therapeutics: Employment. Levie:AIMM Therapeutics: Employment. Schotte:AIMM Therapeutics: Employment, Equity Ownership, Patents & Royalties: Patent WO2017119811A1. Pos:AIMM Therapeutics: Patents & Royalties: Patent WO2017119811A1. Go:AIMM Therapeutics: Employment, Patents & Royalties: Patent WO2017119811A1. Yasuda:AIMM Therapeutics: Employment, Equity Ownership. Cercel:AIMM Therapeutics: Employment. van Hal-van Veen:AIMM Therapeutics: Employment. Frankin:AIMM Therapeutics: Employment. Villaudy:AIMM Therapeutics: Employment, Equity Ownership, Patents & Royalties: Patent WO2017119811A1. van Helden:AIMM Therapeutics: Employment, Equity Ownership, Patents & Royalties: Patent WO2017119811A1. van Eenennaam:AIMM Therapeutics: Employment. Spits:AIMM Therapeutics: Employment, Equity Ownership, Patents & Royalties: Patent WO2017119811A1. Hazenberg:AIMM Therapeutics: Other: Employment/equity of partner/spouse.


2009 ◽  
Vol 33 (10) ◽  
pp. 1386-1391 ◽  
Author(s):  
Hiroaki Goto ◽  
Takuya Naruto ◽  
Reo Tanoshima ◽  
Hiromi Kato ◽  
Tomoko Yokosuka ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5607
Author(s):  
Hagop M. Kantarjian ◽  
Gerhard Zugmaier ◽  
Monika Brüggemann ◽  
Brent L. Wood ◽  
Heinz A. Horst ◽  
...  

Association of blinatumomab treatment with myelosuppression was examined in this study. Peripheral blood counts were assessed prior to, during, and after blinatumomab treatment in patients with relapsed/refractory Philadelphia chromosome-negative (Ph−) B-cell precursor (BCP) acute lymphoblastic leukemia (ALL; n = 267) and Ph+ BCP-ALL (n = 45) from the TOWER and ALCANTARA studies, respectively, or chemotherapy in patients with Ph− BCP-ALL (n = 109) from the TOWER study; all the patients with relapsed/refractory BCP-ALL and responders achieving complete remission (CR) or CR with partial/incomplete hematological recovery (CRh/CRi) were evaluated. Event-free survival (EFS) and overall survival (OS) were assessed in patients achieving CR and CRh/CRi. Median leukocyte, neutrophil, and platelet counts increased during two blinatumomab cycles but remained low longer after chemotherapy. Among the responders, there was a trend that a greater proportion of patients achieved CR with blinatumomab (Ph−, 76.5%; Ph+, 77.8%) versus with chemotherapy (Ph−, 63.6%). In the TOWER study, the survival prognosis for patients achieving CRh/CRi versus CR with blinatumomab was more similar (median OS, 11.9 (95% CI, 3.9–not estimable (NE)) vs. 15.0 (95% CI, 10.4–NE) months, p = 0.062) than with chemotherapy (5.2 (95% CI, 1.6–NE) vs. 18.9 (95% CI, 9.3–NE) months, p = 0.013). Blinatumomab treatment, with only temporary and transient myelosuppression, resulted in a greater survival benefit than chemotherapy.


Blood ◽  
1994 ◽  
Vol 83 (7) ◽  
pp. 1731-1737 ◽  
Author(s):  
A Manabe ◽  
E Coustan-Smith ◽  
M Kumagai ◽  
FG Behm ◽  
SC Raimondi ◽  
...  

Abstract We investigated the effects of interleukin-4 (IL-4) on the survival of leukemic and normal B-cell progenitors cultured on bone marrow stroma. IL-4 (at 100 U/mL) was cytotoxic in 16 of 21 cases of B-lineage acute lymphoblastic leukemia, causing reductions in CD19+ cell numbers that ranged from 50% to greater than 99% (median 83.5%) of those in parallel cultures not exposed to the cytokine. All nine cases with the t(9;22)(q34;q11) or the t(4;11)(q21;q23), chromosomal features that are often associated with multidrug resistance and a fatal outcome, were susceptible to IL-4 toxicity. IL-4 cytotoxicity resulted from induction of programmed cell death (apoptosis); there was no evidence of cell killing mediated by T, natural killer, or stromal cells. IL-4 cytotoxicity extended to a proportion of normal B-cell progenitors. After 7 days of culture with IL-4 at 100 U/mL, fewer CD19+, CD34+ normal lymphoblasts (the most immature subset) survived: in five experiments the mean (+/- SEM) reduction in cell recoveries caused by IL-4 was 60.0% +/- 6.0%. By contrast, reductions in recovery of more differentiated bone marrow B cells (CD19+, CD34-, surface Ig+) were low (6.6% +/- 2.2%; P < .001 by t-test). Our findings indicate that IL-4 is cytotoxic for human B-cell precursors and support clinical testing of IL-4 in cases of high-risk lymphoblastic leukemia resistant to conventional therapy.


Sign in / Sign up

Export Citation Format

Share Document