The First in Class, Alkylator-Histone-Deacetylase-Inhibitor Fusion Molecule Edo-S101 in Combination with Proteasome Inhibitors Induces Highly Synergistic Pro-Apoptotic Signaling through UPR Activation and Suppression of c-Myc and BCL2 in Multiple Myeloma

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4466-4466 ◽  
Author(s):  
Lenka Besse ◽  
Marianne Kraus ◽  
Andrej Besse ◽  
Juergen Bader ◽  
Thomas Mehrling ◽  
...  

Abstract Background. EDO-S101 is a first-in-class alkylating, histone-deacetylase inhibitor (HDACi) fusion molecule with dual activity that is currently in Phase I. It structurally combines the strong DNA damaging effect of bendamustine with a fully functional pan-HDAC inhibitor, vorinostat. Bendamustine has substantial activity against B-cell malignancies; vorinostat sensitizes the same type of cancers against alkylators or proteasome inhibitors (PI). Bendamustine combined with the PI bortezomib (BTZ) is active against multiple myeloma (MM). Cytotoxicity of PI in MM relies on excess induction of proteotoxic stress and triggering of the unfolded protein response (UPR). Upon proteasome inhibition, HDACi synergize with PI by interfering with the a-tubulin-mediated transport of poly-ubiquitinated proteasome substrates to lysosomal destruction. Indeed, EDO-S101 has strong synergistic cytotoxicity with PI in vitro against hematological malignancies, including MM, mantle cell lymphoma and ABC type diffuse large B-cell lymphoma. The aim of this work is to characterize the molecular mechanism of action of the synergy of EDO-S101 with PI in comparison to its established structurally related drugs, bendamustine and vorinostat. Methods. The cytotoxic and molecular activity of EDO-S101 in combination with BTZ and other types of PI was assessed in vitro using the RPMI-8226 and several other MM cell lines. HDAC-inhibiting activity, accumulation of poly-ubiquitinated proteins and induction of ER stress, apoptotic signaling and autophagy induction were assessed by quantitative PCR and western blotting. Proteasome activity was measured with activity based probes (ABP). Apoptosis was assessed by AnnexinV/FITC staining with flow cytometry. Cell viability was evaluated by MTS assay. Results. EDO-S101 showed substantially stronger cytotoxicity in combination with PI than melphalan, bendamustine, cyclophosphamide or PI combined with equimolar vorinostat. EDO-S101 had higher HDACi-type of activity, compared to vorinostat, as demonstrated judged in particular by increased a-tubulin acetylation, providing a potential mechanistic basis for its superior synergy with PI. Consistent with this, EDO-S101 alone induced moderate cellular accumulation of poly-ubiquitinated proteins already in the absence of proteasome inhibition, which was potentiated when EDO-S101 was combined with BTZ. EDO-S101 induced activation of the UPR-regulators XBP1 and IRE1 known to control BTZ sensitivity of MM, in contrast to vorinostat or bendamustine alone. Co-treatment with BTZ and EDO-S101 or vorinostat resulted in highly synergistic triggering of the UPR (ATF4, CHOP, BIP). Interestingly, EDO-S101 in addition induced the pro-apoptotic machinery via upregulation of NOXA, downregulation of BCL2 and an increase of the BAX/BCL2 ratio, and also activated autophagy, as evidenced by upregulation of LC3A and LC3B. While this pro-apoptotic signaling of EDO-S101 was highly synergistic with BTZ-induced apoptotic signals, co-treatment with BTZ and vorinostat reduced apoptotic signaling compared to BTZ alone. EDO-S101 reduced c-Myc expression by 60%, while vorinostat had no effect on c-Myc levels. The combination BTZ+EDO-S101 decreased c-Myc levels by approx. 90%, while these levels remained unchanged during treatment with BTZ+vorinostat. Conclusion. EDO-S101 is a first-in-class, dual-mechanism, alkylator-HDAC-inhibitor fusion molecule that combines key structural features of bendamustine and vorinostat. The molecular mode of action of EDO-S101 differs from that of its structurally related drugs by a more effective interaction with a-tubulin, which may in part explain superior synergy with PI. Most importantly, EDO-S101 has a direct pro-apoptotic activity via downregulation of c-Myc and BCL2 while upregulating NOXA, features not observed with vorinostat. This results in highly synergistic signaling with the PI-induced pro-apoptotic effects. EDO-S101 is a promising advancement of bendamustine with molecular features clearly different from and superior to a combination of bendamustine with vorinostat. EDO-S101 should be explored in combination with proteasome inhibitors in particular in poor risk B cell neoplasms with c-Myc overexpression such as aggressive MM, Burkitt lymphoma or "double hit" aggressive B cell lymphoma. Disclosures Besse: Mundipharma-EDO: Other: travel support. Mehrling:Mundipharma-EDO: Employment. Driessen:Mundipharma-EDO: Honoraria, Membership on an entity's Board of Directors or advisory committees; celgene: Consultancy; janssen: Consultancy.

2019 ◽  
Vol 3 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Scott Best ◽  
Taylor Hashiguchi ◽  
Adam Kittai ◽  
Nur Bruss ◽  
Cody Paiva ◽  
...  

Abstract Alterations in the ubiquitin proteasome system (UPS) leave malignant cells in heightened cellular stress, making them susceptible to proteasome inhibition. However, given the limited efficacy of proteasome inhibitors in non-Hodgkin lymphoma (NHL), novel approaches to target the UPS are needed. Here, we show that TAK-243, the first small-molecule inhibitor of the ubiquitin activating enzyme (UAE) to enter clinical development, disrupts all ubiquitin signaling and global protein ubiquitination in diffuse large B-cell lymphoma (DLBCL) cells, thereby inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Activation of the ER stress response protein kinase R (PKR)–like ER kinase and phosphorylation of eukaryotic translation initiator factor 2α led to upregulation of the proapoptotic molecule C/EBP homologous protein and cell death across a panel of DLBCL cell lines independent of cell of origin. Concurrently, targeting UAE led to accumulation of Cdt1, a replication licensing factor, leading to DNA rereplication, checkpoint activation, and cell cycle arrest. MYC oncoprotein sensitized DLBCL cells to UAE inhibition; engineered expression of MYC enhanced while genetic MYC knockdown protected from TAK-243–induced apoptosis. UAE inhibition demonstrated enhanced ER stress and UPR and increased potency compared with bortezomib in DLBCL cell lines. In vivo treatment with TAK-243 restricted the growth of xenografted DLBCL tumors, accompanied by reduced cell proliferation and apoptosis. Finally, primary patient-derived DLBCL cells, including those expressing aberrant MYC, demonstrated susceptibility to UAE inhibition. In sum, targeting UAE may hold promise as a novel therapeutic approach in NHL.


Oncotarget ◽  
2018 ◽  
Vol 9 (47) ◽  
pp. 28586-28598 ◽  
Author(s):  
Joana N.R. Dias ◽  
Sandra I. Aguiar ◽  
Diane M. Pereira ◽  
Ana S. André ◽  
Lurdes Gano ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4104-4104
Author(s):  
Ying Fang ◽  
Feng Liu ◽  
Wei-li Zhao

Abstract Introduction Diffuse large B-cell lymphoma (DLBCL) represents the most common neoplastic disorder of B-lymphocytes. Although great progress has been made in the treatment of DLBCL, patients with double BCL2/MYC expression have been reported to be refractory to R-CHOP regimen. In our clincial trial (NCT02753647), we found that chidamide, a histone deacetylase inhibitor, plus R-CHOP elicits favorable outcome, especially for DLBCL patients with double BCL2/MYC expression. Therefore,we set out to investigate the underlying mechanism. Methods Core needle biopsy of tumor samples of DLBCL with double BCL2/MYC expression were transplanted into immunodecient (NOD-SCID) mice to establish patient-derived xenograft (PDX) models. Heterotopic PDX models were maintained by passaging tumor tissues from mouse to mouse. Chidamide and doxorubicin, either alone or in combination, were applied to PDX models with low passage numbers (<10) to preserve the genetic integrity of the parental tumors. The dose and administration schedule were as follows: doxorubicin 0.6mg/kg twice a week, chidamide 12.5mg/kg/day for two weeks. RNA-seq and ATAC-seq were performed to achieve an integrative transcriptomic and epigenomic anlaysis of PDX models on Day 7 and Day 14 of treatment. The study was approved by Shanghai Rui Jin Hospital Review Board and written informed consent were obtained from patients in accordance with the Declaration of Helsinki. Results We observed significant growth inhibition of xenografted tumors treated with chidamide combined with doxorubicin, as compared to those of the single treatment. RNA-seq analysis revealed that chidamide and doxorubicin synergistically regulate a set of genes associated with B-cell differentiation and multiple signaling transduction pathways involved regulation of BCL2 and MYC, including the IL6-JAK-STAT and PI3K-AKT-MTOR pathways. Furthermore, accessible chroamtin region profiling by ATAC-seq indicated that chidamide and doxorubin co-repress distal cis-regulatory elements (i.e. enhancers) associated with lymphocyte development. Conclusions As a histone deaceltylase inhibitor, chidamide is able to synergize with doxorubicin to inhibit the growth of DLBCL expressing high levels of MYC and BCL2 in PDX models. This is, in part, due to remodeling of the landscape of accessible chromatins in lymphoma cells. Our study provides insight into how epigenetic therapeutics can sensitize DLBCL with double BCL2/MYC expression to conventional chemotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2249-2249 ◽  
Author(s):  
Marianne Kraus ◽  
Jürgen Bader ◽  
Thomas Mehrling ◽  
Christoph Driessen

Abstract Background: EDO-S101 is a first-in-class alkylating histone-deacetylase inhibitor (HDACi) fusion molecule that combines the strong DNA damaging effect of bendamustine, with a fully functional pan-HDAC inhibitor, vorinostat. Bendamustine has substantial clinical activity against B-cell malignancies, lacks cross resistance with many other anticancer drugs, has superior antimyeloma activity compared to melphalan, and can safely be combined with proteasome inhibitors. The Histone deacetylase inhibitor (HDACi) vorinostat has a broad spectrum of epigenetic activities and sensitizes lymphoma and myeloma cells for a variety of cytotoxic drugs. Vorinostat in particular has a strong synergy with proteasome inhibitors, presumably due to the inhibition of HDAC6. HDAC6 allows polyubiquitinated substrate protein to bypass the inhibited proteasome towards degradation via the autophagy pathway. The EDO-S101 molecule was designed to create a very potent cytotoxic agent for systemic use upon exploiting the synergies of a bi-functional mode of action. Methods: The aim of the in vitro study was to compare the cytotoxicity of EDO-S101 against Multiple Myeloma (MM), leukemia and lymphoma cells with established alkylating agents and to investigate its cellular and molecular effects in combination with proteasome inhibitors. Results: The IC50 of EDO-S101 ranged between 5-13 μM in 8 myeloma cell lines and thus one order of magnitude lower than the IC50 for bendamustine (70 - > 200 μM). Myeloma cell lines with adaptive resistance against bortezomib or carfilzomib did not differ from non-adapted cells in their IC50 for EDO-S101. Likewise, the IC50 for 3 ABC type DLBCL cell lines ranged between 3-8 μM for EDO-S101, compared to bendamustine > 50 μM. EDO-S101 had significant synergistic cytotoxicity with the proteasome inhibitors bortezomib and carfilzomib across all cell types tested, in contrast to melphalan and bendamustine. In a panel of 6 MM cell lines, the combination of EDO-S101 yielded a mean combination index for synergistic cytotoxicity of 0.12 (± 0.06) and 0.08 (± 0.06) for bortezomib or carfilzomib combinations, respectively (with values < 0.8 indicating significant synergism), in contrast to bendamustine 1.35 (± 0.87) and 1.29 (± 0.86), and melphalan 1.09 (± 0.66) and 1.20 (± 1.44). Likewise, EDO-S101 showed synergistic cytotoxicity with bortezomib and carfilzomib against mantle cell lymphoma cells (mean CIs 0.6 and 0.2), in contrast to bendamustine (CIs 1.72, 1.22) and melphalan (CIs 1.16 and 1.17), as well as ABC type DLBCL (CIs 0.32 and 0.28 for EDO S-101, compared to 15 and 34 for bendamustine and 0.87 and 0.78 for melphalan). To dissect the molecular mechanism for the unique synergistic cytotoxicity of EDO-S101 with proteasome inhibition, which contrasted to the established alkylating drugs, we analysed proteasome activity, protein acetylation status, accumulation of polyubiquitinated proteins as well as regulatory and effector proteins of the unfolded protein response (UPR) in RPMI8226 myeloma cells by western blot. EDO-S101 induced strong protein and histone acetylation, confirming its HDACi-like activity. Interestingly, and in contrast to bendamustine, melphalan and vorinostat, EDO-S101 was a strong inducer of pIRE-1, the key activator protein of the UPR in MM cells. IRE1 activation and induction of the UPR have recently been shown to be the major determinants of proteasome inhibitor sensitivity in human MM. Conclusions: We conclude that EDO-S101, an alkylating HDAC inhibitor fusion molecule, displays bi-functional activity. Compared to bendamustine and melphalan, it has superior monoactivity in vitro against hematologic malignancies including MM, mantle cell lymphoma and ABC type DLBCL. Of particular interest is the strong synergy of EDO-S101 with proteasome inhibitors which also stands out in comparison to the established alkylating agents. The latter is associated with induction of pIRE1, the key regulator of the UPR by EDO- S101. Both, the superior monoactivity of EDO-S101 and its mechanism-based synergy with proteasome inhibitors warrant further development of the compound towards clinical testing. Disclosures Driessen: Mundipharma: Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document