SRPK1 Is a Therapeutic Vulnerability in Acute Myeloid Leukemia through Its Effects on Alternative Isoforms of Epigenetic Regulators Including BRD4

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 781-781
Author(s):  
Konstantinos Tzelepis ◽  
Etienne De Braekeleer ◽  
Isaia Barbieri ◽  
Vijay Baskar ◽  
Demetrios Aspris ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which the therapeutic landscape has changed little for decades. Aberrant mRNA splicing plays an important role in cancer development and genes coding for several of the major components of the spliceosome are targeted by somatic mutations in several cancers including myelodysplastic syndromes and AML. Recently, myeloid neoplasms harbouring spliceosome gene mutations were shown to be preferentially susceptible to pharmacological disruption of the spliceosome. Here we report that targeting particular pathways of the spliceosome machinery can also be an effective therapeutic strategy in other types of AML. Recently, we generated a comprehensive catalogue of genetic vulnerabilities in AML using CRISPR-Cas9 genome-wide recessive screens and reported several novel intuitive and non-intuitive therapeutic candidates. Amongst these we identified SRPK1, the gene coding for a serine-threonine kinase that phosphorylates the major spliceosome protein SRSF1. Here, we demonstrate that targeted genetic disruption of SRPK1 in MLL-rearranged AMLs leads to differentiation and apoptosis (Fig. 1A). Additionally, the survival of immunocompromised mice transplanted with human AML cell lines carrying the MLL-AF9 fusion gene, namely MOLM-13 and THP-1, was significantly prolonged by genetic disruption of SRPK1 with CRISPR-Cas9. Similar effects were seen with pharmacological inhibition of SRPK1 in vitro and in vivo, using the novel SRPK1-specific kinase inhibitor SPHINX31 (Fig. 1B-C). Importantly, we go on to demonstrate that, while the SRPK1 kinase activity is required for AML cell survival, it is dispensable for normal hematopoiesis. At the molecular level, we show that genetic or pharmacological inhibition of SRPK1 was associated with widespread changes in the splicing of multiple genes including several with roles in leukemogenesis such as MYB, BRD4 and MED24 . We focused on BRD4 as its splicing isoforms have distinct molecular properties and found that SRPK1 inhibition led to a substantial switch from the short (BRD4S) to the long (BRD4L) isoform at the mRNA and protein levels (Fig. 1D-E). This was associated with BRD4 eviction from genomic loci involved in myeloid leukemogenesis including BCL2 and MYC. Notably, ectopic expression of the short (BRD4S) isoform rescued the phenotype of SRPK1 inhibition suggesting that the observed BRD4 splicing switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Furthermore, we show that the BRD inhibitor iBET-151 synergizes with SRPK1 inhibition to kill human MLL-AF9 -driven AMLs in vitro and in vivo. Collectively our findings reveal that SRPK1 is required for normal splicing of key epigenetic regulators including BRD4 and represents a novel therapeutic vulnerability in AML that can be used alone or in combination with clinically relevant epigenetic drugs to enhance their anti-leukemic effects. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4313-4313
Author(s):  
Lei Wang ◽  
Jie Jin

Abstract Abstract 4313 Previous studies showed HAA regime [HHT (homoharringtonine), cytarabine and ACR (aclarubicin)] resulted in a high complete remission (CR) rate and a better overall survival (OS) rate in patients with primary acute myeloid leukemia. To confirm if a synergistically cytotoxicity was found in AML cells, we investigated the antitumor effect relationship of HHT and ACR against AML cells. Using in vitro system, we demonstrated that simultaneous exposure to HHT and ACR resulted in strong synergistic anti-proliferative effect and apoptosis inducing in AML cells. In vivo, combination of HHT and ACR may be result in a favorable survival in AML xenograft mice. The assay of microarray gene expressing profiling highlighted apparent difference in expression of PI3K gene and WNT3a gene between cells treated by HHT and cells exposure to ACR. Furthermore, decreased expression of PI3K110 and P-AKT protein were observed in AML cells treated with HHT for 3h while no significant change in the expression of two proteins was observed in 90nM of ACR-treated cells. Western Blot analysis also showed ACR could obviously inhibit WNT3a and β-catenin protein levels in AML cells after 3 hours exposure. Although HHT could not inhibit WNT3a protein, it also could apparently down-regulate expression of β-catenin in AML cells. Simultaneous decrease of PI3K signal and WNT3a signal was induced by the combination of HHT and ACR in AML cell lines and primary AML cells. To explore possible targets of synergistically cytotoxity induced by combined HHT/ACR, we silenced wnt3a expression by RNA interference. Then we found suppression of wnt3a expression could enhance the cytotoxity of HHT and AKT inhibitor. Moreover, combining ACR with AKT inhibitor resulted in a synergistically cytotoxic effect too. β-catenin is a shared molecular in both AKT pathway and WNT pathway. Up-regulating of β-catenin expression failed to reduce cell apoptosis induced by HHT plus ACR while partially decrease the growth inhibition rate caused by combining treatment. β-catenin is required for the self-renewal of AML-LSC. Our study also suggests that combining HHT and ACR may synergistically induce apoptosis in LSC-enriched cells. These results indicate that simultaneously inhibiting activity of PI3K/AKT pathway and WNT/β-catenin pathway is a possible mechanism of synergistically cytotoxity induced combinated HHT/ACR in AML cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 915-915
Author(s):  
Stuart A Rushworth ◽  
Lyubov Zaitseva ◽  
Megan Y Murray ◽  
Matthew J Lawes ◽  
David J MacEwan ◽  
...  

Abstract Introduction Despite recent significant progress in the understanding of the biology of acute myeloid leukemia (AML) the clinical outcomes for the majority of patients diagnosed with AML presently remain poor. Consequently, there is an urgent need to identify pharmacological strategies in AML, which are not only effective but can be tolerated by the older, less well patient. Recently our group and others have shown that there is high Bruton’s Tyrosine Kinase (BTK) phosphorylation and RNA expression in AML. Moreover, our recent study described for the first time that ibrutinib and BTK-targeted RNA interference reduced factor-induced proliferation of both AML cell lines and primary AML blasts, as well as reducing AML blast adhesion to bone marrow stromal cells. Inhibition of BTK has been shown to regulate chronic lymphocytic leukemia, mantle cell lymphoma and multiple myeloma cell migration by inhibiting SDF1 (stromal derived factor 1) induced CXCR4 regulated cell trafficking. Here we report that in human AML ibrutinib in addition functions in a similar way to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. Methods To investigate the role of BTK in regulating AML migration we used both pharmacological inhibitor ibrutinib and genetic knockdown using a lentivirus mediated BTK targeted miRNA in primary AML blasts and AML cell lines. We examined migration of AML blasts and AML cells to SDF-1 using Transwell permeable plates with 8.0µM pores. Western blotting was used to examine the role of SDF-1 in regulating BTK, AKT and MAPK activation in primary AML blasts. Results We initially examined the expression of CXCR4 in human AML cell lines and found that 4/4 cell lines were positive for CXCR4 expression. Next we examined the effects of ibrutinib on the migration of the AML cell lines U937, MV4-11, HL60 and THP-1 in response to SDF1. We found that ibrutinib can inhibit the migration of all AML cell lines tested. We tested the in-vitro activity of ibrutinib on SDF-1 induced migration in a spectrum of primary AML blasts from a wide age spectrum of adult patients and across a range of WHO AML subclasses and found that ibrutinib significantly inhibits primary AML blast migration (n=12). Next we found that ibrutinib can inhibit SDF-1 induced BTK phosphorylation and downstream MAPK and AKT signalling in primary AML blast. Finally to eliminate the problems associated with off target ibrutinib activity we evaluated migration of AML cells lines using genetic inhibition of BTK. The introduction of BTK-specific miRNA dramatically inhibited the expression of BTK in THP-1 and HL60 and reduced SDF1 mediated migration confirming that BTK is involved in regulating AML migration in response to SDF1. Conclusions These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Satomi Tanaka ◽  
Satoru Miyagi ◽  
Goro Sashida ◽  
Tetsuhiro Chiba ◽  
Jin Yuan ◽  
...  

Abstract EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2flox/flox mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia–like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3726-3726
Author(s):  
Daniel Olive ◽  
Audrey Benyamine ◽  
Aude Le Roy ◽  
Rémy Castellano ◽  
Julie Gertner-Dardenne ◽  
...  

Abstract As they can kill Acute Myeloid Leukemia (AML) blasts in vitro and in vivo, Vg9Vd2T cells are key players in the design of new strategies of immunotherapy. AminoBisphonates (NBP) can enhance their activation in vitro and in vivo. Their combination with low-dose IL2 has shown promising results in 2 patients with AML who underwent partial remission. NBP treatment of blasts inhibits the Mevalonate pathway. The subsequent accumulation of Isopentenyl Diphosphate sensitize AML blasts to Vg9Vd2T cells killing but some AML cell lines blasts are resistant to this TCR mediated-lysis. Butyrophilin 3 A1 (BTN3A1) has been shown to be involved in IPP recognition and Vg9Vd2 T cells activation. Agonist monoclonal antibodies (mAb) recognizing the 3 isoforms of BTN3, can trigger BTN3 on tumor cell lines and sensitize them to Vg9Vd2 T cells lysis. We show that primary AML blasts from patient at diagnosis are heterogeneously killed by allogenic-IL-2-NBP-expanded Vg9Vd2 T. Some are resistant to this lysis and/or poorly sensitized by NBP. BTN3 molecules are highly expressed by blasts of AML cell lines and primary AML samples. We show that treatment of primary AML blasts with agonist anti-BTN3 mAb can overcome the resistance to Vg9Vd2 cells lysis in vitro. We assess this effect in vivo, showing that the addition of agonist anti-BTN3 mAb to Vg9Vd2 cells infusion decreased the tumor burden and increased the survival of NOG mice xenografted with luciferase-transduced U937 cell line. We confirm this effect in a model of mice xenografted with primary AML blasts, showing that treatment with anti-BTN3 mAb added to Vg9Vd2 cells infusion can decrease the number of blastic cells in the spleen, bone marrow and the blood, without requiring additional cytokine infusion. This drastic effect on sensitization of primary AML blasts to Vg9Vd2T cells killing could be of great interest especially in cases of refractory or relapsing AML. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4529-4538 ◽  
Author(s):  
Nicolas Pineault ◽  
Christian Buske ◽  
Michaela Feuring-Buske ◽  
Carolina Abramovich ◽  
Patty Rosten ◽  
...  

Abstract HOX genes, notably members of the HOXA cluster, and HOX cofactors have increasingly been linked to human leukemia. Intriguingly, HOXD13, a member of the HOXD cluster not normally expressed in hematopoietic cells, was recently identified as a partner of NUP98 in a t(2;11) translocation associated with t-AML/MDS. We have now tested directly the leukemogenic potential of the NUP98-HOXD13 t(2; 11) fusion gene in the murine hematopoietic model. NUP98-HOXD13 strongly promoted growth and impaired differentiation of early hematopoietic progenitor cells in vitro; this effect was dependent on the NUP98 portion and an intact HOXD13 homeodomain. Expression of the NUP98-HOXD13 fusion gene in vivo resulted in a partial impairment of lymphopoiesis but did not induce evident hematologic disease until late after transplantation (more than 5 months), when some mice developed a myeloproliferative-like disease. In contrast, mice transplanted with bone marrow (BM) cells cotransduced with NUP98-HOXD13 and the HOX cofactor Meis1 rapidly developed lethal and transplantable acute myeloid leukemia (AML), with a median disease onset of 75 days. In summary, this study demonstrates that NUP98-HOXD13 can be directly implicated in the molecular process leading to leukemic transformation, and it supports a model in which the transforming properties of NUP98-HOXD13 are mediated through HOX-dependent pathways.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-20
Author(s):  
Katharina Rothe ◽  
Xiaojia Niu ◽  
Min Chen ◽  
Rick Li ◽  
Sungeun Nam ◽  
...  

Acute myeloid leukemia (AML) is a heterogeneous haematological cancer characterized phenotypically by the rapid clonal growth of myeloid cells and an accumulation of blasts in the peripheral blood and bone marrow of patients. Despite the major progress that has been made in categorizing different genetic and molecular AML subgroups, therapies and long-term patient outcomes have not changed significantly over the past four decades. Recently, venetoclax (ABT-199), a BH3-mimetic and selective BCL-2 inhibitor, was approved for the treatment of older patients with AML. However, the limited efficacy, drug resistance in complex karyotype AML and disease progression on venetoclax as well as the inherent resistance of leukemic stem cells (LSCs) to therapy pose significant clinical challenges, warranting identification of novel targets and improved treatment strategies. One candidate target is AXL, a member of the TYRO3/AXL/MER (TAM) family of receptor tyrosine kinases. AXL and its ligand growth arrest-specific gene 6 (GAS6) are elevated in AML patients and LSCs, and associated with poor prognosis. To test whether targeting of the AXL/GAS6 pathway is a feasible treatment strategy for AML, in particular to eradicate LSCs, we developed SLC-391, a novel, potent and selective AXL inhibitor. In vitro and in vivo evaluations of the pharmaceutical properties of SLC-391 indicated reasonable solubility, excellent metabolic stability as well as desirable bioavailability in mice and rats. In silico molecular docking analysis showed that SLC391 can adopt a conformation with surface and charge complementary to the active site of the AXL kinase, potentially engaging in hydrophobic ring-mediated interactions. Further, cell-based studies discovered that SLC-391 targets AML cells with high AXL/GAS6 expression, particularly MLL+ AML cells, and synergizes with venetoclax in cell viability and apoptosis assays (CI<0.6). In addition, simultaneous AXL and BCL-2 inhibition reduced the clonal short- and long-term growth of primitive AML patient cells in CFC re-plating and LTC-IC assays compared to single or control treatments (20-95% inhibition). Moreover, a combination of AXL inhibition and venetoclax treatment was able to target LSCs and AML blasts in two different preclinical patient-derived xenotransplantation (PDX) models, extending the mean survival of these mice by 14-30 days compared to single agents (P<0.025). Mechanistically, single-cell RNA-sequencing and functional validation studies revealed that AXL inhibition perturbs oxidative metabolism, and differentially targets signaling pathways to synergize with venetoclax in leukemic cell killing. Importantly, the combination of AXL inhibition plus venetoclax treatment was not toxic to normal BM cells from healthy donors. Hence, our findings identify a promising, improved and specific treatment strategy for AML, particularly patients with high AXL/GAS6 expression. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2900-2907 ◽  
Author(s):  
Sean F. Landrette ◽  
Ya-Huei Kuo ◽  
Karen Hensen ◽  
Sahar Barjesteh van Waalwijk van Doorn-Khosrovani ◽  
Paola N. Perrat ◽  
...  

AbstractRecurrent chromosomal rearrangements are associated with the development of acute myeloid leukemia (AML). The frequent inversion of chromosome 16 creates the CBFB-MYH11 fusion gene that encodes the fusion protein CBFβ-SMMHC. This fusion protein inhibits the core-binding factor (CBF), resulting in a block of hematopoietic differentiation, and induces leukemia upon the acquisition of additional mutations. A recent genetic screen identified Plag1 and Plagl2 as CBFβ-SMMHC candidate cooperating proteins. In this study, we demonstrate that Plag1 and Plagl2 independently cooperate with CBFβ-SMMHC in vivo to efficiently trigger leukemia with short latency in the mouse. In addition, Plag1 and Plagl2 increased proliferation by inducing G1 to S transition that resulted in the expansion of hematopoietic progenitors and increased cell renewal in vitro. Finally, PLAG1 and PLAGL2 expression was increased in 20% of human AML samples. Interestingly, PLAGL2 was preferentially increased in samples with chromosome 16 inversion, suggesting that PLAG1 and PLAGL2 may also contribute to human AML. Overall, this study shows that Plag1 and Plagl2 are novel leukemia oncogenes that act by expanding hematopoietic progenitors expressing CbFβ-SMMHC.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1881-1881
Author(s):  
Yanyan Zhang ◽  
Satyananda Patel ◽  
Monika Wittner ◽  
Stephane De Botton ◽  
Eric Solary ◽  
...  

Abstract Abstract 1881 The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates to pathogenesis is unclear. Here we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4high (25/47; 53%) from CXCR4neg/low (22/47, 47%) AML patients. Leukemic engraftment in NOD/Shi-scid/IL-2Rnull (NOG) mice was observed for both the CXCR4high and CXCR4neg/low groups. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOG leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to CXCL12. Mechanisms of this anti-leukemic effect included interference with the retention of LICs with their supportive bone marrow microenvironment niches, as indicated by a mobilization of LICs in response to drugs, and increased apoptosis of leukemic cells in vitro and in vivo. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 225-225
Author(s):  
Yoko Ogawara ◽  
Takuo Katsumoto ◽  
Yukiko Aikawa ◽  
Yutaka Shima ◽  
Yuki Kagiyama ◽  
...  

Abstract Mutations in genes encoding isocitrate dehydrogenase (IDH) 1 and 2 are frequently observed in numerous cancers including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS) and angioimmunoblastic t-cell lymphoma (AITL). The roles of mutant IDHs in tumorigenesis remain unclear because of a lack of appropriate cancer models. Here we established a mouse AML model harboring an IDH2 mutation. IDH1/2 mutations in AML frequently occur simultaneously with mutations in other genes such as NPM, DNMT3A, and FLT3. In accordance with these observations, IDH2/R140Q, NPMc, DNMT3A/R882H and FLT3/ITD cooperatively induced AML in the mouse model. When only three out of the four mutant genes were transduced, the onset of AML was delayed in any combinations. These results clearly indicate that all four mutations are necessary for the efficient induction of AML. Gene-expression analysis indicated that IDH2/R140Q and NPMc cooperatively activate Hoxa9/Meis1 and hypoxia pathways to maintain AML cells in vivo. These two pathways are likely to be important for the IDH2/R140Q-mediated engraftment/survival of NPMc+ cells in mice. DNMT3A/R882H further upregulated the expression levels of Meis1. Furthermore, DNMT3A/R882H promoted the maintenance of cells in an undifferentiated state. Previous studies have shown that FLT3/ITD promotes cell growth and survival. Taken together, our results suggest that multiple signaling pathways are activated in this IDH-mediated AML system. The tumor-associated mutant IDHs catalyze the formation of an oncometabolite 2-hydroxyglutarate (2-HG), which dysregulates a set of α-ketoglutarate-dependent dioxygenases that includes epigenetic regulators (TETs and KDM4A), hypoxic signaling molecule (EGLN) and others (collagen prolyl 4-hydroxylases). Because mutant IDHs act via a mechanism that is completely different from those of previously described oncogenes, it has attracted increasing attention as a new therapeutic target. Small molecules that potently and selectively inhibit the mutant IDHs induced differentiation of cancer cells in vitro. However, it remains unclear whether the mutant IDHs are valid targets for cancer therapy in vivo. Here we report that AML harboring IDH2/R140Q can be blocked by conditional deletion of IDH2/R140Q, even after leukemia has developed. Deletion of IDH2/R140Q blocked 2-HG production and the maintenance of Csf-1r+ and c-Kit+ leukemia stem cells, resulting in survival of the AML mice. These results indicate that the IDH2 mutation is critical for the development and maintenance of AML stem cells, and that mutant IDHs are promising targets for anticancer therapy. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 134 (23) ◽  
pp. 3079-3091
Author(s):  
Erna Yang ◽  
Wei Guan ◽  
Desheng Gong ◽  
Xuefeng Gao ◽  
Caixia Han ◽  
...  

Abstract The AML1-ETO oncoprotein, which results from t(8;21) translocation, is considered an initial event of t(8;21) acute myeloid leukemia (AML). However, the precise mechanisms of the oncogenic activity of AML1-ETO is yet to be fully determined. The present study demonstrates that AML1-ETO triggers the heterochromatic silencing of microRNA-564 (miR564) by binding at the AML1 binding site along the miR564 promoter region and recruiting chromatin-remodeling enzymes. Suppression of miR564 enhances the oncogenic activity of the AML1-ETO oncoprotein by directly inhibiting the expression of CCND1 and the DNMT3A genes. Ectopic expression of miR564 can induce retardation of G1/S transition, reperform differentiation, promote apoptosis, as well as inhibit the proliferation and colony formation of AML1-ETO+ leukemia cells in vitro. Enhanced miR564 levels can significantly inhibit the tumor proliferation of t(8;21)AML in vivo. We first identify an unexpected and important epigenetic circuitry of AML1-ETO/miR564/CCND1/DNMT3A that contributes to the leukemogenesis in vitro/vivo of AML1-ETO+ leukemia, indicating that miR564 enhancement could provide a potential therapeutic method for AML1-ETO+ leukemia.


Sign in / Sign up

Export Citation Format

Share Document