hoxa cluster
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 20)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 11 (11) ◽  
pp. 2262-2273
Author(s):  
Mei Feng ◽  
Chengjie Zhuo ◽  
Xuefen Zhu

Mycoplasma pneumoniae (MP) is the primary cause of community-acquired lung inflammation. The MP-induced manifestations of pneumonia are associated with the release of pro-inflammatory cytokines; however, the mechanisms of MP-induced inflammation have not been fully clarified. The purpose of the present study was to determine whether long noncoding RNA HOXA cluster anti-sense RNA 2 (lncRNA HOXA-AS2) is involved in MP-induced inflammation. A model of MP-induced cellular inflammation was established using the human BEAS-2B lung epithelial cell line and lncRNA HOXA-AS2 levels were detected using reverse transcription-quantitative (RT-q) PCR. MTT and flow cytometric analysis were used to assess cell viability and apoptosis, respectively. The secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were measured by ELISA, and protein levels of phosho- (p-)p65 and p-NF-κB inhibitor α (p-IκBα) were detected by western blotting. The results suggest that MP infection significantly decreases the level of lncRNA HOXA-AS2 in BEAS-2B cells. lncRNA HOXA-AS2 overexpression significantly enhanced cell viability, inhibited apoptosis, decreased pro-inflammatory factor expression (TNF-α, IL-β and IL-6) and inhibited NF-κB pathway activation in MP-stimulated BEAS-2B cells. Conversely, lncRNA HOXA-AS2-knockdown resulted in the opposite effects. In conclusion, lncRNA HOXA-AS2 is involved in MP infection-induced inflammation and regulates the NF-κB signaling pathway.


Blood ◽  
2021 ◽  
Author(s):  
Emily B Heikamp ◽  
Jill A Henrich ◽  
Florian Perner ◽  
Eric M Wong ◽  
Charles Hatton ◽  
...  

Translocations involving the NUP98 gene produce NUP98-fusion proteins and are associated with a poor prognosis in acute myeloid leukemia (AML). MLL1 is a molecular dependency in NUP98-fusion leukemia, and therefore we investigated the efficacy of therapeutic blockade of the Menin-MLL1 interaction in NUP98-fusion leukemia models. Using mouse leukemia cell lines driven by NUP98-HOXA9 and NUP98-JARID1A fusion oncoproteins, we demonstrate that NUP98-fusion driven leukemia is sensitive to the Menin-MLL1 inhibitor VTP50469, with an IC50 similar to what we have previously reported for MLL-rearranged and NPM1c leukemia cells. Menin-MLL1 inhibition upregulates markers of differentiation such as CD11b and downregulates expression of pro-leukemogenic transcription factors such as Meis1 in NUP98-fusion transformed leukemia cells. We demonstrate that MLL1 and the NUP98 fusion protein itself are evicted from chromatin at a critical set of genes that are essential for maintenance of the malignant phenotype. In addition to these in vitro studies, we established patient-derived xenograft (PDX) models of NUP98-fusion driven AML to test the in vivo efficacy of Menin-MLL1 inhibition. Treatment with VTP50469 significantly prolongs survival of mice engrafted with NUP98-NSD1 and NUP98-JARID1A leukemias. Gene expression analysis revealed that Menin-MLL1 inhibition simultaneously suppresses a pro-leukemogenic gene expression program, including downregulation of the HOXA cluster, and upregulates tissue-specific markers of differentiation. These preclinical results suggest that Menin-MLL1 inhibition may represent a rational, targeted therapy for patients with NUP98-rearranged leukemias.


2021 ◽  
Author(s):  
Shahan Mamoor

Epithelial ovarian cancer (EOC) is the most lethal gynecologic cancer (1). We performed discovery of genes associated with epithelial ovarian cancer and of the high-grade serous ovarian cancer (HGSC) subtype, using published and public microarray data (2, 3) to compare global gene expression profiles of normal ovary or fallopian tube with that of primary tumors from women diagnosed with epithelial ovarian cancer or HGSC. We identified the gene encoding HOXA cluster antisense RNA 3, HOXA-AS3, as among the genes whose expression was most different in epithelial ovarian cancer as compared to the normal fallopian tube. HOXA-AS3 expression was significantly lower in high-grade serous ovarian tumors relative to normal fallopian tube. HOXA-AS3 expression correlated with overall survival in patients with ovarian cancer. These data indicate that expression of HOXA-AS3 is perturbed in epithelial ovarian cancers broadly and in ovarian cancers of the HGSC subtype. HOXA-AS3 may be relevant to pathways underlying ovarian cancer initiation (transformation) or progression.


Author(s):  
Mays Abuhantash ◽  
Emma M. Collins ◽  
Alexander Thompson

Hematopoiesis, the process of blood formation, is controlled by a complex developmental program that involves intrinsic and extrinsic regulators. Blood formation is critical to normal embryonic development and during embryogenesis distinct waves of hematopoiesis have been defined that represent the emergence of hematopoietic stem or progenitor cells. The Class I family of homeobox (HOX) genes are also critical for normal embryonic development, whereby mutations are associated with malformations and deformity. Recently, members of the HOXA cluster (comprising 11 genes and non-coding RNA elements) have been associated with the emergence and maintenance of long-term repopulating HSCs. Previous studies identified a gradient of HOXA expression from high in HSCs to low in circulating peripheral cells, indicating their importance in maintaining blood cell numbers and differentiation state. Indeed, dysregulation of HOXA genes either directly or by genetic lesions of upstream regulators correlates with a malignant phenotype. This review discusses the role of the HOXA cluster in both HSC emergence and blood cancer formation highlighting the need for further research to identify specific roles of these master regulators in normal and malignant hematopoiesis.


2021 ◽  
Author(s):  
Sudarshan Pinglay ◽  
Milica Bulajic ◽  
Dylan P Rahe ◽  
Emily Huang ◽  
Ran Brosh ◽  
...  

Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modes controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce 'synthetic regulatory reconstitution', a novel conceptual framework for studying gene regulation and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130-170 kilobases each) to an ectopic location in the mouse genome. We find that a HoxA cluster lacking distal enhancers recapitulates correct patterns of chromatin remodeling and transcription in response to patterning signals, while distal enhancers are required for full transcriptional output. Synthetic regulatory reconstitution is a generalizable strategy to decipher the regulatory logic of gene expression in complex genomes.


Author(s):  
Nadia Mebrouk ◽  
Amina Barkat

Introduction: While several literature reports have been published about patients with microdeletions within chromosome 7p, only a small fraction of those reports is specific to deletions that encompass the TWIST gene and HOXA gene cluster.  The large-span deletions within this cluster result in haploinsufficiency of six genes known to have a role in different autosomal dominant genetic disorders: TWIST1, GSDME (DFNA5), CYCS, HOXA11, HOXA13, and GARS.  Deletion of TWIST1 gene on 7p21 and deletion of HOXA cluster on 7pl5.2 lead to Saethre-Chotzen syndrome and to hand-foot-genital syndrome, respectively. Objectives: Our patient presented with a phenotype combining Saethre-Chotzen syndrome (SCS) and hand-foot-genital syndrome (HFS), which is similar to previously reported cases with a deletion spanning 7p21– p14.3. The objective of our report is to correlate the clinical observations with the patient’s genetic test result, namely 46,XY,del(7)(p14p21). Patient and Methods: We describe a patient who had manifestations of SCS and HFU, caused by an interstitial deletion of chromosome 7p21–p14 detected by RHG band. Results and Conclusion: We therefore confirm previous reports that microdeletions of 7p spanning the TWIST gene and HOXA gene cluster lead to a clinically recognizable ‘haploinsufficiency syndrome’.  All of the features of this patient could be accounted for by combined effect of the deletion of the TWIST and HOXA cluster.


2020 ◽  
Vol 22 (1) ◽  
pp. 347
Author(s):  
Brandon Decker ◽  
Michal Liput ◽  
Hussam Abdellatif ◽  
Donald Yergeau ◽  
Yongho Bae ◽  
...  

During the development of mouse embryonic stem cells (ESC) to neuronal committed cells (NCC), coordinated changes in the expression of 2851 genes take place, mediated by the nuclear form of FGFR1. In this paper, widespread differences are demonstrated in the ESC and NCC inter- and intra-chromosomal interactions, chromatin looping, the formation of CTCF- and nFGFR1-linked Topologically Associating Domains (TADs) on a genome-wide scale and in exemplary HoxA-D loci. The analysis centered on HoxA cluster shows that blocking FGFR1 disrupts the loop formation. FGFR1 binding and genome locales are predictive of the genome interactions; likewise, chromatin interactions along with nFGFR1 binding are predictive of the genome function and correlate with genome regulatory attributes and gene expression. This study advances a topologically integrated genome archipelago model that undergoes structural transformations through the formation of nFGFR1-associated TADs. The makeover of the TAD islands serves to recruit distinct ontogenic programs during the development of the ESC to NCC.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Yubin Feng ◽  
Shuang Hu ◽  
Lanlan Li ◽  
Xiaoqing Peng ◽  
Feihu Chen

AbstractAcute myeloid leukemia (AML) is the most common hematological malignancy in the world. Long noncoding RNAs (lncRNAs) play an important role in the development of physiology and pathology. Many reports have shown that lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) is a carcinogen and plays an important role in many tumors, but little is known about its role in AML. The aim of this study was to explore the potential mechanism and role of HOXA-AS2 in AML. HOXA-AS2 was upregulated in AML cell lines and tissues, and the overexpression of HOXA-AS2 is negatively correlated with the survival of patients. Silencing HOXA-AS2 can inhibit the proliferation and induce differentiation of AML cells in vitro and in vivo. Overexpressing HOXA-AS2 showed the opposite result. Moreover, more in-depth mechanism studies showed that carcinogenicity of HOXA-AS2 exerted mainly through binding with the epigenetic inhibitor Enhancer of zeste homolog 2 (EZH2) and then inhibiting the expression of Large Tumor Suppressor 2 (LATS2). Taken together, our findings highlight the important role of HOXA-AS2 in AML, suggesting that HOXA-AS2 may be an effective therapeutic target for patients with AML.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke Fang ◽  
Wei Huang ◽  
Yu-Meng Sun ◽  
Tian-Qi Chen ◽  
Zhan-Cheng Zeng ◽  
...  

Abstract Background Long noncoding enhancer RNAs (lnc-eRNAs) are a subset of stable eRNAs identified from annotated lncRNAs. They might act as enhancer activity-related therapeutic targets in cancer. However, the underlying mechanism of epigenetic activation and their function in cancer initiation and progression remain largely unknown. Results We identify a set of lncRNAs as lnc-eRNAs according to the epigenetic signatures of enhancers. We show that these lnc-eRNAs are broadly activated in MLL-rearranged leukemia (MLL leukemia), an aggressive leukemia caused by a chromosomal translocation, through a mechanism by which the HOXA cluster initiates enhancer activity, and the epigenetic reader BRD4 cooperates with the coregulator MLL fusion oncoprotein to induce transcriptional activation. To demonstrate the functional roles of lnc-eRNAs, two newly identified lnc-eRNAs transcribed from the SEELA eRNA cluster (SEELA), SEELA1 and SEELA2, are chosen for further studies. The results show that SEELA mediated cis-activated transcription of the nearby oncogene Serine incorporate 2 (SERINC2) by directly binding to the K31 amino acid (aa) of histone H4. Chromatin-bound SEELA strengthens the interaction between chromatin and histone modifiers to promote histone recognition and oncogene transcription. Further studies show that the SEELA-SERINC2 axis regulated aspects of cancer metabolism, such as sphingolipid synthesis, to affect leukemia progression. Conclusions This study shows that lnc-eRNAs are epigenetically activated by cancer-initiating oncoproteins and uncovers a cis-activating mechanism of oncogene transcription control based on lnc-eRNA-mediated epigenetic regulation of enhancer activity, providing insights into the critical roles of lnc-eRNAs in cancer initiation and progression.


2020 ◽  
Author(s):  
Yubin Feng ◽  
Shuang Hu ◽  
Lanlan Li ◽  
Xiaoqing Peng ◽  
Feihu Chen

Abstract BackgroundLong noncoding RNAs (lncRNAs) plays an important role in the development of physiology and pathology. Many reports have shown that lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) is a carcinogen and plays an important role in many tumors, but little is known about its role in Acute myeloid leukemia (AML). MethodsThe expression of HOXA-AS2 in AML cell line was detected by qRT-PCR. AML cases from the public database (GEPIA) were also included in this study. Cell counting kit-8 (CCK-8) assay, flow cytometry, immunofluorescence and Western blot were used to detect the role of HOXA-AS2 in AML cells. Luciferase reporter gene detection, RIP, RNA pull-down and RNA-ChIP detection were used to demonstrate the molecular biological mechanism of HOXA-AS2 in AML.ResultsHOXA-AS2 was upregulated in AML cell lines and tissues, and the overexpression of HOXA-AS2 is negatively correlated with the survival of patients. Silencing HOXA-AS2 can inhibit the proliferation and induce differentiation of AML cells in vitro and in vivo. Overexpressing HOXA-AS2 showed the opposite result. Moreover, more in-depth mechanism studies showed that carcinogenicity of HOXA-AS2 exerted mainly through binding with the epigenetic inhibitor Enhancer of zeste homolog 2 (EZH2) and then inhibiting the expression of Large Tumor Suppressor 2 (LATS2). ConclusionsTaken together, our findings highlight the important role of HOXA-AS2 in AML, suggesting that HOXA-AS2 may be an effective therapeutic target for patients with AML.


Sign in / Sign up

Export Citation Format

Share Document