scholarly journals Erythropoietin in Vitro. II. Effect on "Stem Cells"

Blood ◽  
1964 ◽  
Vol 24 (4) ◽  
pp. 331-342 ◽  
Author(s):  
ALLAN J. ERSLEV

Abstract The in vitro effect of sheep erythropoietin on bone marrow cells was studied in order to elucidate its point of action. It was concluded that erythropoietin in vitro acts primarily or exclusively on stem cells and does not have a measurable effect on differentiated nucleated red blood cells or on reticulocytes. Attempts to isolate and study stem cells by freezing or by long or short term culture were not successful.

2013 ◽  
Author(s):  
Melo Ocarino Natalia de ◽  
Silvia Silva Santos ◽  
Lorena Rocha ◽  
Juneo Freitas ◽  
Reis Amanda Maria Sena ◽  
...  

1973 ◽  
Vol 56 (2) ◽  
pp. 429-433 ◽  
Author(s):  
Russell Meints ◽  
Eugene Goldwasser

Cells capable of forming colonies in spleens of irradiated mice (CFU) are lost temporarily when bone marrow cells from rats or mice are maintained in culture. Rat marrow CFU go through a minimum at about 3 days after which there is a slow increase in the number of CFU in culture, reaching a maximum at 9 days. Mouse marrow CFU reach a minimum at 3 days and a maximum at 7 days. Some rat marrow CFU persist in culture for as long as 28 days.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0235
Author(s):  
Maeda Mohammad ◽  
Ahmed Majeed Al-Shammari ◽  
Rafal H Abdulla ◽  
Aesar Ahmed ◽  
Aseel Khalid

Background: Adipose derived-mesenchymal stem cells have been used as an alternative to bone marrow cells in this study. Objective: We investigated the in vitro isolation, identification, and differentiation of stem cells into neuron cells, in order to produce neuron cells via cell culture, which would be useful in nerve injury treatment. Method: Mouse adipose mesenchymal stem cells were dissected from the abdominal subcutaneous region. Neural differentiation was induced using β-mercaptoethanol. This study included two different neural stage markers, i.e. nestin and neurofilament light-chain, to detect immature and mature neurons, respectively. Results: The immunocytochemistry results showed that the use of β-mercaptoethanol resulted in the successful production of neuron cells. This was attributable to the increase and significant overexpression of the nestin protein during the early exposure period, which resulted in the expression of the highest levels of nestin. In comparison, the expression level of neurofilament light-chain protein also increased with time but less than nestin. Non-treated mesenchymal stem cells, considered as control showed very low expression for both markers. Conclusion: The results of this study indicate that adipose mesenchymal cells represent a good, easily obtainable source of bone marrow cells used to developing the differentiation process.


Lupus ◽  
2017 ◽  
Vol 27 (1) ◽  
pp. 49-59 ◽  
Author(s):  
X Yang ◽  
J Yang ◽  
X Li ◽  
W Ma ◽  
H Zou

Background The objective of this paper is to analyze the role of bone marrow-derived mesenchymal stem cells (BM-MSCs) on the differentiation of T follicular helper (Tfh) cells in lupus-prone mice. Methods Bone marrow cells were isolated from C57BL/6 (B6) mice and cultured in vitro, and surface markers were identified by flow cytometry. Naïve CD4+ T cells, splenocytes and Tfh cells were isolated from B6 mice spleens and co-cultured with BM-MSCs. The proliferation and the differentiation of CD4+ T cells and Tfh cells were analyzed by flow cytometry. Lupus-prone MRL/Mp-lpr/lpr (MRL/lpr) mice were treated via intravenous injection with expanded BM-MSCs, the differentiation of Tfh cells was detected, and the relief of lupus nephritis was analyzed. Results MSCs could be successfully induced from bone marrow cells, and cultured BM-MSCs could inhibit T cell proliferation dose-dependently. BM-MSCs could prevent Tfh cell development from naïve CD4+ T cells and splenocytes. BM-MSCs could inhibit IL-21 gene expression and cytokine production and inhibit isolated Tfh cells and STAT3 phosphorylation. In vivo study proved that BM-MSCs intravenous injection could effectively inhibit Tfh cell expansion and IL-21 production, alleviate lupus nephritis, and prolong the survival rate of lupus-prone mice. Conclusions BM-MSCs could effectively inhibit the differentiation of Tfh cells both in vitro and in vivo. BM-MSC treatment could relieve lupus nephritis, which indicates that BM-MSCs might be a promising therapeutic method for the treatment of SLE.


1992 ◽  
Vol 176 (2) ◽  
pp. 351-361 ◽  
Author(s):  
H Kodama ◽  
M Nose ◽  
Y Yamaguchi ◽  
J Tsunoda ◽  
T Suda ◽  
...  

The preadipose cell line, PA6, can support long-term hemopoiesis. Frequency of the hemopoietic stem cells capable of sustaining hemopoiesis in cocultures of bone marrow cells and PA6 cells for 6 wk was 1/5.3 x 10(4) bone marrow cells. In the group of dishes into which bone marrow cells had been inoculated at 2.5 x 10(4) cells/dish, 3 of 19 dishes (16%) contained stem cells capable of reconstituting erythropoiesis of WBB6F1-W/Wv mice, indicating that PA6 cells can support the proliferation of primitive hemopoietic stem cells. When the cocultures were treated with an antagonistic anti-c-kit monoclonal antibody, ACK2, only a small number of day 12 spleen colony-forming units survived; and hemopoiesis was severely reduced. However, when the cocultures were continued with antibody-free medium, hemopoiesis dramatically recovered. To examine the proliferative properties of the ACK2-resistant stem cells, we developed a colony assay system by modifying our coculture system. Sequential observations of the development of individual colonies and their disappearance demonstrated that the stem cells having higher proliferative capacity preferentially survive the ACK2 treatment. Furthermore, cells of subclones of the PA6 clone that were incapable of supporting long-term hemopoiesis expressed mRNA for the c-kit ligand. These results suggest that a mechanism(s) other than that involving c-kit receptor and its ligand plays an important role in the survival and proliferation of primitive hemopoietic stem cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3171-3171
Author(s):  
Yue Si ◽  
Cordula Leurs ◽  
Edward Srour ◽  
Samantha Ciccone ◽  
Helmut Hanenberg ◽  
...  

Abstract Fanconi anemia (FA) is a complex autosomal recessive genetic disorder characterized within the hematological system by progressive bone marrow aplasia, a high propensity to develop acute myeloid leukemia, and hypersensitivity to alkylating agents including mitomycin c. The identification of individual FA genes raises the potential of using gene transfer technology to express/introduce the functional cDNA in/into deficient autologous stem cells. We have previously shown that in the absence of genetic correction with a retroviral mediated Fancc transgene, ex vivo culture of Fancc−/− stem/progenitor cells (HSPC) predisposes uncorrected Fancc−/− HSPC cells to clonal hematopoiesis (Haneline, Blood 2003). Therefore we examined the potential of a helper-free human foamy virus (HFV) derived construct that encodes both the human FANCC and EGFP transgenes to transduce murine Fancc−/− HSC in the absence of prestimulation. In initial experiments, we determined that 40–80% of progenitors were transduced following a single overnight HFV infection using a 20:1 moiety of infection. Subsequent studies demonstrated that HFV efficiently transduced primitive hematopoietic progenitors in G0 and G1 phases of the cell cycle as evidenced both by using multicolor fluorescence activated cell sorting and subsequent culture of sorted cell populations in high proliferating potential (HPP-CFC) and low proliferating potential colony forming assays. Aliquots of HFV transduced cells that were transduced with the construct encoding both Fancc and EGFP, or the reporter transgene only were transplanted into irradiated recipient mice. Four months following transplantation, bone marrow cells were isolated from the reconstituted recipients and clonogenic assays were established in a range of mitomycin c (MMC) concentrations. In these experiments, the MMC hypersensitivity of Fancc−/− progenitors was corrected to wild-type levels. To assess quantitatively the potential of HFV expressed FANCC to correct stem cell repopulating ability, we next utilized the competitive repopulating assay. In two replicate experiments, we determined that the repopulating activity of HFV-transduced Fancc−/− stem cells was comparable to wildtype controls six months following transplantation in primary and secondary recipients. Collectively, these data provide in vivo evidence that the HFV vector is an efficient vehicle for introducing a functional hFANCC transgene into quiescent Fancc−/− HSC in the absence of prestimulation and for complementing the cellular FA defect in vitro and in vivo.


1991 ◽  
Vol 174 (5) ◽  
pp. 1283-1286 ◽  
Author(s):  
B Péault ◽  
I L Weissman ◽  
C Baum ◽  
J M McCune ◽  
A Tsukamoto

The search for human hematopoietic stem cells has been hampered by the lack of appropriate assay systems. Demonstration of the ability of precursor cell candidates to give rise to T cells is of significant difficulty since dissociated in vitro cultured thymus stroma cells lose their ability to sustain thymocyte maturation. To define further the differentiative capacities of the rare human fetal liver and bone marrow cells that express the CD34 surface antigen and exhibit in vitro myeloid and pre-B cell activities, we have microinjected them into HLA-mismatched fetal thymus fragments, partially depleted of hematopoietic cells by low temperature culture. In vitro colonized thymuses have then been allowed to develop upon engraftment into immunodeficient SCID mice. Using this modification of the SCID-hu system, we show that low numbers of fetal CD34+ progenitor cells can repopulate the lymphoid compartment in the human thymus.


2000 ◽  
Vol 192 (9) ◽  
pp. 1273-1280 ◽  
Author(s):  
Kazuhiro Sudo ◽  
Hideo Ema ◽  
Yohei Morita ◽  
Hiromitsu Nakauchi

Little is known of age-associated functional changes in hematopoietic stem cells (HSCs). We studied aging HSCs at the clonal level by isolating CD34−/lowc-Kit+Sca-1+ lineage marker–negative (CD34−KSL) cells from the bone marrow of C57BL/6 mice. A population of CD34−KSL cells gradually expanded as age increased. Regardless of age, these cells formed in vitro colonies with stem cell factor and interleukin (IL)-3 but not with IL-3 alone. They did not form day 12 colony-forming unit (CFU)-S, indicating that they are primitive cells with myeloid differentiation potential. An in vivo limiting dilution assay revealed that numbers of multilineage repopulating cells increased twofold from 2 to 18 mo of age within a population of CD34−KSL cells as well as among unseparated bone marrow cells. In addition, we detected another compartment of repopulating cells, which differed from HSCs, among CD34−KSL cells of 18-mo-old mice. These repopulating cells showed less differentiation potential toward lymphoid cells but retained self-renewal potential, as suggested by secondary transplantation. We propose that HSCs gradually accumulate with age, accompanied by cells with less lymphoid differentiation potential, as a result of repeated self-renewal of HSCs.


Immunobiology ◽  
2006 ◽  
Vol 211 (1-2) ◽  
pp. 105-116 ◽  
Author(s):  
Carla Cristina Squaiella ◽  
Renata Zeigler Ananias ◽  
Juliana Sekeres Mussalem ◽  
Eleni Gonçalves Braga ◽  
Elaine Guadelupe Rodrigues ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document