scholarly journals The behavior of transferrin iron in the rat

Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 218-228 ◽  
Author(s):  
H Huebers ◽  
W Bauer ◽  
E Huebers ◽  
E Csiba ◽  
C Finch

Abstract The behavior of rat transferrin has been investigated employing acrylamide gel electrophoresis and isoelectric focusing. In vitro trace labeling with iron chelates at 30 min was 93%-98% effective, whereas binding by simple ferric salts was reduced to 71%-76%. Complete and specific binding of 59FeSO4 by the iron binding sites of transferrin was demonstrated after in vitro or in vivo addition of ferrous ammonium sulfate in pH 2 saline up to the point of iron saturation. In vitro the radioriron transferrin complex in plasma was stable and its iron had a negligible exchange with other transferrin binding sites over several hours. The distribution of radioiron added in vitro or through absorption was shown to be random between the binding sites of slow and fast transferrin molecule. Iron distribution among body tissues was similar for mono- and diferric transferrin iron and was not affected by the site distribution of iron on the transferrin molecule. The only important aspect of transferrin iron binding was the more rapid tissue uptake of iron in the diferric form was compared to monoferric transferrin. Additional in vivo effects on internal iron exchange were produced by changes in the iron balance of the animal. In the iron loaded animal, monoferric transferrin injected into the plasma was rapidly loaded by iron from tissue and thereby converted to diferric transferrin. Injection of diferric transferrin in the iron deficient animal was associated with a rapid disappearance from circulation of the original complex and a subsequent appearance of monoferric transferrin as a result of iron returning from tissues. These observations support the concept that plasma iron behaves as a single pool except that diferric iron exchange occurs at a more rapid rate than dose monoferric iron exchange.

Blood ◽  
1981 ◽  
Vol 57 (2) ◽  
pp. 218-228
Author(s):  
H Huebers ◽  
W Bauer ◽  
E Huebers ◽  
E Csiba ◽  
C Finch

The behavior of rat transferrin has been investigated employing acrylamide gel electrophoresis and isoelectric focusing. In vitro trace labeling with iron chelates at 30 min was 93%-98% effective, whereas binding by simple ferric salts was reduced to 71%-76%. Complete and specific binding of 59FeSO4 by the iron binding sites of transferrin was demonstrated after in vitro or in vivo addition of ferrous ammonium sulfate in pH 2 saline up to the point of iron saturation. In vitro the radioriron transferrin complex in plasma was stable and its iron had a negligible exchange with other transferrin binding sites over several hours. The distribution of radioiron added in vitro or through absorption was shown to be random between the binding sites of slow and fast transferrin molecule. Iron distribution among body tissues was similar for mono- and diferric transferrin iron and was not affected by the site distribution of iron on the transferrin molecule. The only important aspect of transferrin iron binding was the more rapid tissue uptake of iron in the diferric form was compared to monoferric transferrin. Additional in vivo effects on internal iron exchange were produced by changes in the iron balance of the animal. In the iron loaded animal, monoferric transferrin injected into the plasma was rapidly loaded by iron from tissue and thereby converted to diferric transferrin. Injection of diferric transferrin in the iron deficient animal was associated with a rapid disappearance from circulation of the original complex and a subsequent appearance of monoferric transferrin as a result of iron returning from tissues. These observations support the concept that plasma iron behaves as a single pool except that diferric iron exchange occurs at a more rapid rate than dose monoferric iron exchange.


1989 ◽  
Vol 256 (2) ◽  
pp. G436-G441 ◽  
Author(s):  
C. Bianchi ◽  
G. Thibault ◽  
A. De Lean ◽  
J. Genest ◽  
M. Cantin

We have studied the localization and the characterization of atrial natriuretic factor (ANF) binding sites by radioautographic techniques. Quantitative in vitro radioautography with a computerized microdensitometer demonstrated the presence of high-affinity, low-capacity 125I-ANF-(99-126) binding sites (Kd, 48 pM; Bmax, 63 fmol/mg protein) mainly in the villi of 20-microns slide-mounted transverse sections of the rat jejunum. Competition curves showed 50% inhibitory concentrations of 55 and 1,560 pM for ANF-(99-126) and ANF-(103-123), respectively. In vivo electron microscope radioautography showed that 80% of the silver grains were localized on the lamina propria fibroblast-like cells, 18% on mature enterocytes, and 2% on capillaries. Bradykinin and adrenocorticotropin did not compete with ANF binding. These results demonstrate that ANF binding sites in the rat jejunum possess the pharmacological characteristics of functional ANF receptors encountered in other rat tissues, and ultrastructural radioautographs show their cellular distribution. Taken together, these results demonstrate the presence and the localization of specific binding sites for ANF in the jejunal villi of the rat small intestine.


1995 ◽  
Vol 15 (3) ◽  
pp. 1405-1421 ◽  
Author(s):  
C C Adams ◽  
J L Workman

To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo.


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897 ◽  
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


2020 ◽  
Vol 48 (16) ◽  
pp. 8914-8926
Author(s):  
Erin E Cutts ◽  
J Barry Egan ◽  
Ian B Dodd ◽  
Keith E Shearwin

Abstract The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


1975 ◽  
Vol 189 (1097) ◽  
pp. 543-575 ◽  

Methods have been devised to measure the binding of [ 14 C]amiloride to isolated cells from bladders of toads, Bufo marinus . This agent blocks transepithelial sodium transport across bladders by preventing sodium entry to the transporting mechanism. A saturable binding component has been found with an affinity of 5.6 x 10 7 m -1 in the presence of 1.1 mM Na + , which corresponds to the affinity of amiloride when used as a transport inhibitor at the same sodium concentration. In freshly isolated cells the capacity of the binding sites is 3.6 x 10 5 sites/cell, but this value falls to about one third in aged suspensions. When cells are treated with vasopressin (100 mU/ml) somewhat less specific binding is measured at an amiloride concentration giving 50 % occupancy. The results are consistent with the view that vasopressin moves the binding curve to the right along the concentration axis, reducing the affinity of amiloride by a factor of approximately two, while leaving the total capacity unaffected. The affinity of amiloride when used as an inhibitor of transport is also found to be reduced by a factor of two by vasopressin, and complete inhibition of transport can still be achieved. d -Aldosterone in vitro increases the number of amiloride binding sites in isolated cells by approximately 115%, and results from transport studies indicate that there is no significant change in the affinity of amiloride after d -aldosterone treatment. Inhibitors of transcription and translation (actinomycin D and cycloheximide) prevent the increase in amiloride binding caused by d -aldosterone. In vivo the effects of d -aldosterone are more complex, but it is shown that the steroid increases the transport capacity of the tissue, when this is expressed as the number of amiloride binding sites per unit mass of tissue. The results are discussed in terms of the ways in which the two hormones may alter the entry of sodium into the epithelial cells, and so in turn affect transepithelial sodium transport.


1995 ◽  
Vol 41 (2) ◽  
pp. 28-30
Author(s):  
T. S. Saatov ◽  
F. Ya. Gulyamova ◽  
G. U. Usmanova

Besides intracellular receptors of thyroid hormones, specific binding sites for T3 and T4 were detected on plasma membranes (PM) of some cells and a relationship between membrane reception .and lipid composition of membranes shown. The parameters of 125I-T4 binding to highly purified PM of hepatic and cerebral cells of rats were studied. The hepatic and cerebral cellular membranes were found to contain two sites of hormone binding each, one of these sites being characterized by a high affinity and low capacity, and the other by low affinity and a higher binding capacity. The association constant of highly affine site of hepatocyte membranes was found to be higher than that of brain cell membranes. T4 membranous receptors may be significant in the process of cell “recognition" by the hormone. In vivo and in vitro experiments with 125I-T4 and 14C-labeled thyroxin in ganglioside fractions showed appreciable binding of the hormone to Gm3 fraction, this evidently pointing to participation of this, ganglioside in T4 interaction with membrane receptor. It is possible that gangliosides situated on membranous surface are components of or function as receptors.


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


2019 ◽  
Author(s):  
Erin Cutts ◽  
J. Barry Egan ◽  
Ian Dodd ◽  
Keith Shearwin

AbstractThe Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA, and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl’s repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


Sign in / Sign up

Export Citation Format

Share Document