scholarly journals Deoxyribonucleoside triphosphate accumulation by leukemic cells

Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 419-424 ◽  
Author(s):  
BS Mitchell ◽  
NL Edwards ◽  
CA Koller

Abstract The toxicity of the deoxyribonucleosides, 2′-deoxyadenosine, 2′- deoxyguanosine, and thymidine, for human T lymphoblasts is mediated by the accumulation of the corresponding deoxyribonucleoside triphosphate (dATP, dGTP, or dTTP, respectively). We have examined whether leukemic cells of non-T-cell origin are capable of accumulating deoxyribonucleotides in culture and whether this capability correlates with the activities of purine metabolizing enzymes in these cells. We have found that non-T, non-B acute lymphoblastic leukemia cells with low ecto-5′-nucleotidase and high adenosine deaminase activities increase their dATP pools by greater than tenfold when exposed to deoxyadenosine and an inhibitor of adenosine deaminase in culture. Cells from 2 of 9 patients with chronic lymphocytic leukemia and 4 of 11 patients with acute nonlymphoblastic leukemia achieved similar elevations in dATP, but there was no relationship between dATP accumulation and adenosine deaminase, purine nucleoside phosphorylase, or ecto-5′-nucleotidase activities. Treatment of four individuals with acute lymphoblastic leukemia with the adenosine deaminase inhibitor, 2′- deoxycoformycin, resulted in elevations in plasma deoxyadenosine concentrations and in increments in lymphoblast dATP levels that were similar to those measured in lymphoblasts cultured with deoxyadenosine and deoxycoformycin prior to treatment. In vitro incubations of leukemic cells with deoxyribonucleosides may provide a rational basis for the use of these compounds as chemotherapeutic agents.

Blood ◽  
1983 ◽  
Vol 62 (2) ◽  
pp. 419-424
Author(s):  
BS Mitchell ◽  
NL Edwards ◽  
CA Koller

The toxicity of the deoxyribonucleosides, 2′-deoxyadenosine, 2′- deoxyguanosine, and thymidine, for human T lymphoblasts is mediated by the accumulation of the corresponding deoxyribonucleoside triphosphate (dATP, dGTP, or dTTP, respectively). We have examined whether leukemic cells of non-T-cell origin are capable of accumulating deoxyribonucleotides in culture and whether this capability correlates with the activities of purine metabolizing enzymes in these cells. We have found that non-T, non-B acute lymphoblastic leukemia cells with low ecto-5′-nucleotidase and high adenosine deaminase activities increase their dATP pools by greater than tenfold when exposed to deoxyadenosine and an inhibitor of adenosine deaminase in culture. Cells from 2 of 9 patients with chronic lymphocytic leukemia and 4 of 11 patients with acute nonlymphoblastic leukemia achieved similar elevations in dATP, but there was no relationship between dATP accumulation and adenosine deaminase, purine nucleoside phosphorylase, or ecto-5′-nucleotidase activities. Treatment of four individuals with acute lymphoblastic leukemia with the adenosine deaminase inhibitor, 2′- deoxycoformycin, resulted in elevations in plasma deoxyadenosine concentrations and in increments in lymphoblast dATP levels that were similar to those measured in lymphoblasts cultured with deoxyadenosine and deoxycoformycin prior to treatment. In vitro incubations of leukemic cells with deoxyribonucleosides may provide a rational basis for the use of these compounds as chemotherapeutic agents.


Blood ◽  
1981 ◽  
Vol 58 (1) ◽  
pp. 141-152 ◽  
Author(s):  
J Ritz ◽  
JM Pesando ◽  
SE Sallan ◽  
LA Clavell ◽  
J Notis-McConarty ◽  
...  

Abstract We tested the efficacy of passive serotherapy in the treatment of acute lymphoblastic leukemia in four patients who had relapsed while receiving standard chemotherapeutic agents. Each patient received multiple intravenous infusions of J-5 monoclonal antibody specific for common acute lymphoblastic leukemia antigen (CALLA). In the three patients with circulating leukemic cells, there was a rapid decrease in circulating blasts that began immediately after antibody infusion, but not all leukemic cells were cleared, and remaining cells appeared to be resistant to further serotherapy. Although J-5 antibody was also demonstrable on bone marrow lymphoblasts immediately after antibody infusion in one patient, there was no change in bone marrow cellularity or differential during serotherapy. Analysis of the cell surface phenotype of leukemic cells during serotherapy and in vitro studies with patient cells suggests that resistance to serotherapy was mediated in part by antigenic modulation of CALLA in response to J-5 antibody.


Blood ◽  
1982 ◽  
Vol 60 (5) ◽  
pp. 1096-1102 ◽  
Author(s):  
SS Matsumoto ◽  
AL Yu ◽  
LC Bleeker ◽  
B Bakay ◽  
FH Kung ◽  
...  

Abstract Leukemic cells incubated in vitro with 2′-deoxyadenosine (dAdo) plus an inhibitor of adenosine deaminase, 2′-deoxy-coformycin (DCF), show different metabolic responses depending on the histologic and immunologic type of the leukemia. Leukemic cells were obtained from 54 patients with acute lymphoblastic leukemia (ALL), 9 with myeloid or nonlymphoblastic leukemia, 3 with chronic lymphocytic leukemia (CLL), and 3 with lymphoma. There was a wide variation in the LD50, the concentration of dAdo that caused 50% inhibition of the incorporation of 3H-thymidine into cells in the presence of 20 microM DCF. T-cell leukemia specimens were much more sensitive to dAdo than were specimens of pre-B-ALL and null-ALL. In leukemic cells that had been incubated with 14C-dAdo plus DCF, a good correlation was observed between the LD50 and the ratio of 14C-deoxyATP to ATP (correlation coefficient for the fit to a hyperbola = 0.853). The accumulation of deoxyATP by the leukemic cell specimens was correlated best with the activity of ecto- ATPase, less well with cytoplasmic 5′-nucleotidase and deoxyadenosine kinase, and poorly with adenosine deaminase and ecto-5′-nucleotidase. The clinical response to DCF therapy of a patient with T-ALL and another with pre-B-ALL was consistent with the in vitro metabolic response of their cells to DCF and dAdo.


Blood ◽  
1982 ◽  
Vol 60 (5) ◽  
pp. 1096-1102 ◽  
Author(s):  
SS Matsumoto ◽  
AL Yu ◽  
LC Bleeker ◽  
B Bakay ◽  
FH Kung ◽  
...  

Leukemic cells incubated in vitro with 2′-deoxyadenosine (dAdo) plus an inhibitor of adenosine deaminase, 2′-deoxy-coformycin (DCF), show different metabolic responses depending on the histologic and immunologic type of the leukemia. Leukemic cells were obtained from 54 patients with acute lymphoblastic leukemia (ALL), 9 with myeloid or nonlymphoblastic leukemia, 3 with chronic lymphocytic leukemia (CLL), and 3 with lymphoma. There was a wide variation in the LD50, the concentration of dAdo that caused 50% inhibition of the incorporation of 3H-thymidine into cells in the presence of 20 microM DCF. T-cell leukemia specimens were much more sensitive to dAdo than were specimens of pre-B-ALL and null-ALL. In leukemic cells that had been incubated with 14C-dAdo plus DCF, a good correlation was observed between the LD50 and the ratio of 14C-deoxyATP to ATP (correlation coefficient for the fit to a hyperbola = 0.853). The accumulation of deoxyATP by the leukemic cell specimens was correlated best with the activity of ecto- ATPase, less well with cytoplasmic 5′-nucleotidase and deoxyadenosine kinase, and poorly with adenosine deaminase and ecto-5′-nucleotidase. The clinical response to DCF therapy of a patient with T-ALL and another with pre-B-ALL was consistent with the in vitro metabolic response of their cells to DCF and dAdo.


Blood ◽  
2003 ◽  
Vol 102 (13) ◽  
pp. 4541-4546 ◽  
Author(s):  
Amy Holleman ◽  
Monique L. den Boer ◽  
Karin M. Kazemier ◽  
Gritta E. Janka-Schaub ◽  
Rob Pieters

AbstractResistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in leukemic cells from 50 children with ALL was studied after in vitro exposure with 4 important drugs in ALL therapy (prednisolone, vincristine, l-asparaginase, and daunorubicin). Exposure to each drug resulted in early induction of phosphatidylserine (PS) externalization and mitochondrial transmembrane (Δψm) depolarization followed by caspase-3 activation and poly(ADP-ribose) polymerase (PARP) inactivation in the majority of patients. For all 4 drugs, a significant inverse correlation was found between cellular drug resistance and (1) the percentage of cells with PS externalization (< .001 < P < .008) and (2) the percentage of cells with Δψm depolarization (.002 < P < .02). However, the percentage of cells with caspase-3 activation and the percentage of cells with PARP inactivation showed a significant inverse correlation with cellular resistance for prednisolone (P = .001; P = .001) and l-asparaginase (P = .01; P = .001) only. This suggests that caspase-3 activation and PARP inactivation are not essential for vincristine- and daunorubicin-induced apoptosis. In conclusion, resistance to 4 unrelated drugs is associated with defect(s) upstream or at the level of PS externalization and Δψm depolarization. This leads to decreased activation of apoptotic parameters in resistant cases of pediatric ALL. (Blood. 2003;102:4541-4546)


Blood ◽  
1981 ◽  
Vol 58 (1) ◽  
pp. 141-152
Author(s):  
J Ritz ◽  
JM Pesando ◽  
SE Sallan ◽  
LA Clavell ◽  
J Notis-McConarty ◽  
...  

We tested the efficacy of passive serotherapy in the treatment of acute lymphoblastic leukemia in four patients who had relapsed while receiving standard chemotherapeutic agents. Each patient received multiple intravenous infusions of J-5 monoclonal antibody specific for common acute lymphoblastic leukemia antigen (CALLA). In the three patients with circulating leukemic cells, there was a rapid decrease in circulating blasts that began immediately after antibody infusion, but not all leukemic cells were cleared, and remaining cells appeared to be resistant to further serotherapy. Although J-5 antibody was also demonstrable on bone marrow lymphoblasts immediately after antibody infusion in one patient, there was no change in bone marrow cellularity or differential during serotherapy. Analysis of the cell surface phenotype of leukemic cells during serotherapy and in vitro studies with patient cells suggests that resistance to serotherapy was mediated in part by antigenic modulation of CALLA in response to J-5 antibody.


Blood ◽  
1978 ◽  
Vol 52 (4) ◽  
pp. 712-718 ◽  
Author(s):  
SD Smith ◽  
EM Uyeki ◽  
JT Lowman

Abstract An assay system in vitro for the growth of malignant lymphoblastic colony-forming cells (CFC) was established. Growth of malignant myeloblastic CFC has been previously reported, but this is the first report of growth of malignant lymphoblastic CFC. Established assay systems in vitro have been very helpful in elucidating the control of growth and differentiation of both normal and malignant bone marrow cells. Lymphoblastic CFC were grown from the bone marrow aspirates of 20 children with acute lymphoblastic leukemia. Growth of these colonies was established on an agar assay system and maintained in the relative hypoxia (7% oxygen) of a Stulberg chamber. The criteria for malignancy of these colonies was based upon cellular cytochemical staining characteristics, the presence of specific cell surface markers, and the ability of these lymphoid cells to grow without the addition of a lymphoid mitogen. With this technique, specific nutritional requirements and drug sensitivities can be established in vitro, and these data may permit tailoring of individual antileukemic therapy.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 556-561 ◽  
Author(s):  
I Touw ◽  
R Delwel ◽  
R Bolhuis ◽  
G van Zanen ◽  
B Lowenberg

Abstract The role of interleukin 2 (IL 2) as a possible regulator of in vitro proliferation and differentiation of non-T acute lymphoblastic leukemia (ALL) cells was investigated. For this purpose, leukemic cells from the blood or bone marrow of eight untreated patients with common or pre-B ALL were analyzed using the anti-Tac monoclonal antibody (reactive with the IL 2 receptor) in indirect immunofluorescence. The receptors for IL 2, which were initially absent from the cell surface, were induced on high percentages of the ALL cells after the in vitro exposure to the lectin phytohemagglutinin or the phorbol ester 12-O- tetradecanoylphorbol-13-acetate in six patients, suggesting that the cells had become sensitive to IL 2. In colony cultures to which feeder leukocytes and IL 2 had been added, colony growth was obtained in five of eight cases. Whereas the cells from one patient formed colonies in the absence of exogenous stimuli, the cells from others were dependent on the addition of feeder leukocytes plus IL 2. In the latter cases, feeder leukocytes alone, releasing some IL 2, stimulated growth suboptimally at different cell concentrations. Their stimulative effect was significantly enhanced when leukocyte-derived IL 2 or pure recombinant IL 2 was supplemented. Alone, IL 2 (up to 500 U/mL) did not support colony formation. Apparently, IL 2 and feeder leukocytes are both required for the induction of colonies in these cases of ALL. From cell sorting of fluorescent anti-common ALL antigen (CALLA) stained cells it appeared that colonies descended from cells with high as well as low or negative CALLA expression. Immunophenotyping demonstrated the presence of the original leukemia markers on colony cells, but was not indicative of maturation of ALL toward more differentiated B cells. We suggest that IL 2 can stimulate the in vitro proliferation of certain neoplastic B lymphocyte progenitors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4470-4470
Author(s):  
James Z. Huang ◽  
Antony C. Bakke ◽  
Guang Fan ◽  
Rita Braziel ◽  
Ken M. Gatter ◽  
...  

Abstract Individual patients with B-CLL demonstrate variable responses to standard induction and salvage therapeutic regimens. It would be highly desirable to develop a predictable and reproducible laboratory diagnostic strategy that guides the selection of appropriate drugs and/or regimens based on the drug sensitivity and resistance profiles of leukemic cells for individual patients. As a first step towards this goal, a study was designed to investigate the differences of in vitro drug sensitivity profiles of leukemic cells with different cytogenetic abnormalities from CLL patients. CLL cells from 43 patients were incubated in vitro with four commonly used chemotherapeutic agents (fludarabine, chlorambucil, cladribine or prednisolone) individually or in combination. Multiparameter flow cytometry was utilized to determine the decrease in leukemic cell viability after drug exposure. Both fresh and cryopreserved samples were assessed and were found to be equivalent for assay, regardless of the percentage of B-CLL cells or the degree of spontaneous apoptosis. The highest in vitro resistance to fludarabine, was seen in all seven cases of B-CLL cells with deletions of p53, a cytogenetic abnormality associated with poor clinical outcome. Interestingly, in vitro response to chlorambucil and prednisolone was seen some CLL cases with p53 deletion and correlated with clinical response to these drugs. In CLL cases without p53 deletion, a marked variability in vitro drug sensitivity CLL cells was observed but no significant difference was detected among cases with normal cytogenetics (n=13), ATM deletion (n=4), trisomy 12 (n=3), or 13q deletion (n=7). Our findings provide direct evidence of cellular resistance to fludarabine in CLL associated with p53 deletion, confirming prior clinical observations. In vitro drug sensitivity assay may prove useful in guiding choices for therapy for CLL patients based on the drug sensitivity profile of leukemic cells in individuals.


Sign in / Sign up

Export Citation Format

Share Document