scholarly journals Low molecular weight B cell growth factor induces proliferation of human B cell precursor acute lymphoblastic leukemias

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.

Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Abstract Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1020-1034 ◽  
Author(s):  
FM Uckun ◽  
AS Fauci ◽  
NA Heerema ◽  
CW Song ◽  
SR Mehta ◽  
...  

The purpose of this study was to analyze the expression of B cell growth factor (BCGF) receptors and to elucidate the biologic effects of biochemically purified natural BCGF at the B cell precursor stage of human B lineage lymphoid differentiation. The specific binding of radioiodinated high-mol-wt BCGF (125I-HMW-BCGF) and low-molecular-wt BCGF (125I-LMW-BCGF) to fresh marrow blasts from B cell precursor acute lymphoblastic leukemia (ALL) patients was initially investigated. The estimated number of radioiodinated BCGF molecules bound per blast ranged from undetectable to 24.3 X 10(3) for HMW-BCGF, and from 11.5 X 10(3) to 457.8 X 10(3) for LMW-BCGF. In 3H-TdR incorporation assays, 75% of cases showed a significant response to LMW-BCGF with a median stimulation index of 9.3. By comparison, only 33% of cases showed a significant response to HMW-BCGF with a median stimulation index of 2.4. Subsequently, B cell precursor colony assays were performed to assess and compare the biologic effects of BCGF on leukemic B lineage lymphoid progenitor cells. Among 28 cases studied, 57% responded to both HMW-BCGF and LMW-BCGF, 21% responded only to LMW-BCGF, and the remaining cases showed no proliferative response to either growth factor. The response patterns of virtually pure populations of FACS- sorted leukemic B cell precursors were essentially identical to the proliferative responses of unsorted leukemic B-cell precursors. Synergistic effects between HMW-BCGF and LMW-BCGF were observed in 80% of the cases that responded to both. The numbers of cell-bound radioiodinated BCGF molecules, the stimulation indices, as well as the number of B cell precursor colonies in BCGF-stimulated cultures showed a marked interpatient variation. Patients with structural chromosomal abnormalities (SCAs) involving 12p11–13 or patients with a Philadelphia chromosome showed a greater HMW-BCGF response at the level of leukemic progenitor cells than did other patients (P = .02). The LMW-BCGF response was significantly greater for patients with SCA than for patients without SCA (P = .04). The response of leukemic progenitor cells to HMW-BCGF or LMW-BCGF did not correlate with sex, age, disease status, FAB morphology, WBC at diagnosis, or immunophenotype. To our knowledge, this study represents the first detailed analyses of BCGF receptor expression and BCGF effects in B cell precursor ALL. The data presented provide direct evidence for the expression of functional receptors for both HMW-BCGF and LMW-BCGF in B cell precursor ALL.


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 3982-3988 ◽  
Author(s):  
Michael N. Dworzak ◽  
Angela Schumich ◽  
Dieter Printz ◽  
Ulrike Pötschger ◽  
Zvenyslava Husak ◽  
...  

Abstract CD20 is expressed in approximately one- half of pediatric acute lymphoblastic leukemia (ALL) cases with B-cell precursor (BCP) origin. We observed that it is occasionally up-regulated during treatment. To understand the impact of this on the potential effectiveness of anti-CD20 immunotherapy, we studied 237 CD10+ pediatric BCP-ALL patients with Berlin-Frankfurt-Munster (BFM)–type therapy. We analyzed CD20 expression changes from diagnosis to end-induction, focusing on sample pairs with more than or equal to 0.1% residual leukemic blasts, and assessed complement-induced cytotoxicity by CD20-targeting with rituximab in vitro. CD20-positivity significantly increased from 45% in initial samples to 81% at end-induction (day 15, 71%). The levels of expression also increased; 52% of cases at end-induction had at least 90% CD20pos leukemic cells, as opposed to 5% at diagnosis (day 15, 20%). CD20 up-regulation was frequent in high-risk patients, patients with high minimal residual disease at end-induction, and patients who suffered later from relapse, but not in TEL/AML1 cases. Notably, up-regulation occurred in viable cells sustaining chemotherapy. In vitro, CD20 up-regulation significantly enhanced rituximab cytotoxicity and could be elicited on prednisolone incubation. In conclusion, CD20 up-regulation is frequently induced in BCP-ALL during induction, and this translates into an acquired state of higher sensitivity to rituximab. This study was registered at http://www.clinicaltrials.gov as #NCT00430118.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1020-1034 ◽  
Author(s):  
FM Uckun ◽  
AS Fauci ◽  
NA Heerema ◽  
CW Song ◽  
SR Mehta ◽  
...  

Abstract The purpose of this study was to analyze the expression of B cell growth factor (BCGF) receptors and to elucidate the biologic effects of biochemically purified natural BCGF at the B cell precursor stage of human B lineage lymphoid differentiation. The specific binding of radioiodinated high-mol-wt BCGF (125I-HMW-BCGF) and low-molecular-wt BCGF (125I-LMW-BCGF) to fresh marrow blasts from B cell precursor acute lymphoblastic leukemia (ALL) patients was initially investigated. The estimated number of radioiodinated BCGF molecules bound per blast ranged from undetectable to 24.3 X 10(3) for HMW-BCGF, and from 11.5 X 10(3) to 457.8 X 10(3) for LMW-BCGF. In 3H-TdR incorporation assays, 75% of cases showed a significant response to LMW-BCGF with a median stimulation index of 9.3. By comparison, only 33% of cases showed a significant response to HMW-BCGF with a median stimulation index of 2.4. Subsequently, B cell precursor colony assays were performed to assess and compare the biologic effects of BCGF on leukemic B lineage lymphoid progenitor cells. Among 28 cases studied, 57% responded to both HMW-BCGF and LMW-BCGF, 21% responded only to LMW-BCGF, and the remaining cases showed no proliferative response to either growth factor. The response patterns of virtually pure populations of FACS- sorted leukemic B cell precursors were essentially identical to the proliferative responses of unsorted leukemic B-cell precursors. Synergistic effects between HMW-BCGF and LMW-BCGF were observed in 80% of the cases that responded to both. The numbers of cell-bound radioiodinated BCGF molecules, the stimulation indices, as well as the number of B cell precursor colonies in BCGF-stimulated cultures showed a marked interpatient variation. Patients with structural chromosomal abnormalities (SCAs) involving 12p11–13 or patients with a Philadelphia chromosome showed a greater HMW-BCGF response at the level of leukemic progenitor cells than did other patients (P = .02). The LMW-BCGF response was significantly greater for patients with SCA than for patients without SCA (P = .04). The response of leukemic progenitor cells to HMW-BCGF or LMW-BCGF did not correlate with sex, age, disease status, FAB morphology, WBC at diagnosis, or immunophenotype. To our knowledge, this study represents the first detailed analyses of BCGF receptor expression and BCGF effects in B cell precursor ALL. The data presented provide direct evidence for the expression of functional receptors for both HMW-BCGF and LMW-BCGF in B cell precursor ALL.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1355-1359 ◽  
Author(s):  
MX Zhou ◽  
HW Jr Findley ◽  
AH Ragab

Abstract We are reporting here that low-mol wt B-cell growth factor (LMW-BCGF) and recombinant interleukin-2 (rIL-2) are together able to induce CD3+ cytotoxic T lymphocytes (CTL) with lymphokine-activated killer cell (LAK) activity from the bone marrow (BM) cells of children with acute lymphoblastic leukemia (ALL). Ficoll-Hypaque (FH)-separated BM cells were obtained from patients with active disease (at diagnosis N = 13, in relapse N = 15) and in complete remission (CR; N = 12). CD3+ cells were removed by Leu-4 antibody and immunobeads. Cells were cultured (10(5) cells/mL) in semisolid media with rIL-2 (100 mu/mL), LMW-BCGF (0.1 mu/mL), and the combination of rIL-2 plus LMW-BCGF, respectively, for seven to ten days. Pooled colonies were harvested for phenotyping. LMW-BCGF plus rIL-2 induced large numbers of CD3+ colonies from CD3- precursors. rIL-2 alone did not induce colony formation. In addition, cells were cultured in liquid media with LMW-BCGF, rIL-2, and the combination of LMW-BCGF plus rIL-2, respectively, for seven to 21 days. They were harvested for phenotyping, and cytotoxicity assays were performed v K562, Raji, and autologous leukemic cells. LMW-BCGF plus rIL-2 induced significant expansion of CD3+ cells from CD3- precursors, and these cells were activated to kill autologous leukemic cells in addition to Raji and K562 cell lines. LMW-BCGF or rIL-2 alone did not induce significant expansion or activation of cytotoxic CD3- cells. Our hypothesis is that LMW-BCGF plus rIL-2 stimulates the proliferation and activation of CD3- precursors from the BM cells of children with acute leukemia to become CD3+ cells that have LAK activity. This finding may have therapeutic implications.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1781-1788
Author(s):  
E Privitera ◽  
MP Kamps ◽  
Y Hayashi ◽  
T Inaba ◽  
LH Shapiro ◽  
...  

The prognostically important 1;19 chromosomal translocation can alter the E2A gene on chromosome 19p13 in childhood B-cell precursor acute lymphoblastic leukemia (ALL), leading to formation of a fusion gene (E2A-PBX1) that encodes a hybrid transcription factor with oncogenic potential. It is not known whether this molecular alteration is a uniform consequence of the t(1;19) or is restricted to translocation events within specific immunologic subtypes of the disease. Therefore, we studied leukemic cells from 25 cases of B-cell precursor ALL, with or without evidence of cytoplasmic Ig mu heavy chains (cIg); 17 cases had the t(1;19) by cytogenetic analysis. Leukemic cell DNA samples were analyzed by Southern blotting to detect alterations within the E2A genomic locus; a polymerase chain reaction assay was used to identify expression of chimeric E2A-pbx1 transcripts in leukemic cell RNA; and immunoblotting with anti-Pbx1 antibodies was used to detect hybrid E2A- Pbx1 proteins. Of 11 cases of cIg+ ALL with the t(1;19), 10 had E2A- pbx1 chimeric transcripts with identical junctions and a characteristic set of E2A-Pbx1 hybrid proteins. Each of these cases had E2A gene rearrangements, including the one in which fusion transcripts were not detected. By contrast, none of the six cases of t(1;19)-positive, cIg- ALL had evidence of rearranged E2A genomic restriction fragments, detectable E2A-pbx1 chimeric transcripts, or hybrid E2A-Pbx1 proteins. Typical chimeric E2A-pbx1 transcripts and proteins were detected in one of eight cIg+ leukemias in which the t(1;19) was not identified by cytogenetic analysis, emphasizing the increased sensitivity of molecular analysis for detection of this abnormality. We conclude that the molecular breakpoints in cases of cIg- B-cell precursor ALL with the t(1;19) differ from those in cIg+ cases with this translocation. Leukemias that express hybrid oncoproteins such as E2A-Pbx1 or Bcr-Abl have had a poor prognosis in most studies. Thus, molecular techniques to detect fusion genes and their aberrant products should allow more timely and appropriate treatment of these aggressive subtypes of the disease.


Blood ◽  
1990 ◽  
Vol 75 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
RJ Ford ◽  
A Goodacre ◽  
I Ramirez ◽  
SR Mehta ◽  
F Cabanillas

B-cell non-Hodgkin's lymphomas (NHL-B) have been difficult to establish in long-term cell culture using standard techniques. We report the establishment of five representative cell lines from high grade NHL-B using B-cell growth factor (BCGF). The five NHL-B cell lines display the morphologic, immunophenotypic, genotypic, and biologic characteristics of the lymphoma cells present in the original diagnostic specimen. The cell lines showed at least a sevenfold dose- dependent increase in proliferation in vitro over background in the presence of BCGF. Other putative B-cell growth-stimulating cytokines showed no significant proliferative activity or were inhibitory in some cases. NHL-B cell lines secreted growth factor(s) into culture supernatants that mediated at least a fivefold dose-dependent increase in cell proliferation in autochthonous lymphoma cells and a 10-fold or greater stimulation in growth factor-dependent normal B cell lines in vitro. The cell lines show monoclonal rearrangements of IgH genes and nonrandom chromosomal abnormalities characteristic of NHL-B, while the expression of Epstein-Barr virus associated antigen (EBNA-I) is present in two of the five cell lines. The studies show that lineage-specific growth factors may be used to establish neoplastic B cell lines in vitro, which are important experimental systems for cellular and molecular studies in the NHL-B.


Sign in / Sign up

Export Citation Format

Share Document