scholarly journals Pattern of pyruvate kinase isozymes in erythroleukemia cell lines and in normal human erythroblasts

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

Abstract To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.

Blood ◽  
1984 ◽  
Vol 64 (4) ◽  
pp. 930-936 ◽  
Author(s):  
I Max-Audit ◽  
U Testa ◽  
D Kechemir ◽  
M Titeux ◽  
W Vainchenker ◽  
...  

To further investigate the erythroid nature of the two human erythroleukemia cell lines, K562 and HEL-60, and to define the ontogeny of pyruvate kinase (PK) isozymes (R, M2) in developing human erythroid cells, we have studied the isozymic alterations, if any, during differentiation of these cell lines in vitro and normoblasts isolated from fetal liver in vivo. PK activity of erythroleukemic cell lines was intermediate between that observed in leukocytes and in fetal liver erythroblasts. These cell lines contained a high level of M2-PK, but R- PK was always present, albeit at low concentrations, in all the clones or subclones we studied. Erythroblasts from fetal liver were separated according to density on a Stractan gradient. R-PK levels were nearly constant in the different fractions, whereas M2-PK levels markedly decreased as the erythroblasts became mature and almost completely disappeared in late erythroid cells. Thus, these results clearly demonstrate the erythroid origin of these cell lines.


1995 ◽  
Vol 269 (4) ◽  
pp. L473-L481
Author(s):  
P. M. Reddy ◽  
C. P. Tu ◽  
R. Wu

The purpose of this study is to characterize glutathione S-transferase (GST) gene expression in airway epithelium both in vivo and in vitro. Immunohistochemical staining of nonhuman primate lungs of well-controlled healthy animals reveals the presence of alpha- and pi-class GST isoenzymes in ciliated bronchial epithelium. The stain of mu-GST antibody is either very low or absent in some of these monkey lungs. We observed that primary tracheobronchial epithelial (TBE) cells isolated from human and monkey pulmonary tissues maintain a relatively high level of GST enzymatic activity in culture, compared with various immortalized human TBE cell lines and other nonpulmonary cell lines. Northern blot analysis demonstrated the presence of mu-, pi-, and microsomal-GST messages but not the alpha-class message in cultures of primary TBE cells as well as in various human TBE cell lines. The expression of mu- and pi-class GST genes can be further regulated in culture by various environmental factors; however, most of these regulating factors are associated with TBE cell differentiation in culture. For instance, vitamin A treatment, which was shown to enhance mucous cell differentiation in vitro, stimulated the message levels of mu- and pi-class GST. Furthermore, plating cells on collagen gel substrata, which also enhanced mucous cell differentiation in culture, instead of plastic culture surface, enhanced total GST enzymatic activity by eightfold, and this enhancement is related to an increase in the expression of the pi-class GST gene. These results demonstrated that GST genes are differentially expressed and regulated by various environmental factors in primary TBE cells and various cell lines, and the regulation is correlated to the mucous cell differentiation in culture.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 806-806 ◽  
Author(s):  
Shivani Soni ◽  
Shashi Bala ◽  
Babette Gwynn ◽  
Kenneth E. Sahr ◽  
Luanne L. Peters ◽  
...  

Abstract Emp, erythroblast macrophage protein, was originally detected in erythroblasts and macrophages, which form erythroblastic islands during erythropoiesis in the human bone marrow. The physical contact between erythroblasts and macrophages was suggested to promote the terminal maturation of erythroblasts, leading to their enucleation in vitro. To evaluate the function of Emp in vivo, we employed gene targeting studies to develop an Emp(−/−) mouse model. Mouse embryonic stem cells containing a gene-trap insertion in Emp were obtained from BayGenomics. Insertion of the gene-trap vector into Emp was verified by direct sequencing of cDNA obtained by 5′RACE. Chimeric mice generated by blastocyst microinjection were intercrossed, and the offspring were genotyped by PCR and Southern hybridization. The Emp (+/−) mice were healthy and fertile. However, no live Emp (−/−) mice were found among the progeny of the Emp (+/−) intercrosses. Analysis of timed pregnancies revealed that Emp (−/−) embryos were present at a frequency roughly consistent with Mendelian inheritance throughout the embryonal stages. Homozygous Emp (−/−) embryos were small and pale compared to their littermates, and they survived embryonic development but died at birth. To determine the effect, if any, of Emp gene deletion on definitive hematopoiesis, livers of +/+, +/−, and −/− embryos at E15.5 were examined after H&E and Giemsa staining of paraffin-embedded serial sections, and cytospins. We found few mature erythroid cells in the sinusoids of homozygotes, in contrast to those of either wild-type or heterozygotes, where abundant enucleated red blood cells were observed. Although nucleated erythrocytes were found in both wild-type and mutant embryos, their relative proportions were very different: the less mature forms (proerythroblasts) predominated in the −/− embryos whereas the more mature forms (polychromatophilic/orthochromatic and enucleated erythrocytes) were most common in +/+ and +/− embryos. Furthermore, erythroblastic islands consisting of a central macrophage surrounded by developing erythroblasts were seen in the cytospin preparations of wild-type and heterozygote livers but not in those of homozygous null livers. Since fetal liver macrophages (FLMs) are indispensable for definitive erythropoiesis, we investigated the effect that Emp’s absence might have on development of FLMs. The E15.5 fetal liver sections were stained with the macrophage-specific F4/80 antigen. Numerous F4/80-positive macrophages were present throughout the liver of normal embryos whereas, the number was substantially reduced in Emp (−/−) liver. In summary, in the absence of Emp, FLMs are significantly reduced and terminal maturation of erythroid cells is negatively affected. Thus, the availability of Emp(−/−) embryos will provide a unique experimental model to study the function of macrophages in definitive erythropoiesis.


2011 ◽  
Vol 55 (10) ◽  
pp. 4643-4651 ◽  
Author(s):  
Noa Tejman-Yarden ◽  
Maya Millman ◽  
Tineke Lauwaet ◽  
Barbara J. Davids ◽  
Frances D. Gillin ◽  
...  

ABSTRACTInfections with the diarrheagenic protozoan pathogenGiardia lambliaare most commonly treated with metronidazole (Mz). Treatment failures with Mz occur in 10 to 20% of cases and Mz resistance develops in the laboratory, yet clinically, Mz-resistant (Mzr)G. lambliahas rarely been isolated from patients. To understand why clinical Mzrisolates are rare, we questioned whether Mz resistance entails fitness costs to the parasite. Our studies employed several newly generated and established isogenic Mzrcell lines with stable, high-level resistance to Mz and significant cross-resistance to tinidazole, nitazoxanide, and furazolidone. Oral infection of suckling mice revealed that three of five Mzrcell lines could not establish infection, while two Mzrcell lines infected pups, albeit with reduced efficiencies. Failure to colonize resulted from a diminished capacity of the parasite to attach to the intestinal mucosain vivoand to epithelial cells and plastic surfacesin vitro. The attachment defect was related to impaired glucose metabolism, since the noninfectious Mzrlines consumed less glucose, and glucose promoted ATP-independent parasite attachment in the parental lines. Thus, resistance ofGiardiato Mz is accompanied by a glucose metabolism-related attachment defect that can interfere with colonization of the host. Because glucose-metabolizing pathways are important for activation of the prodrug Mz, it follows that a fitness trade-off exists between diminished Mz activation and reduced infectivity, which may explain the observed paucity of clinical Mzrisolates ofGiardia. However, the data also caution that some forms of Mz resistance do not markedly interfere within vivoinfectivity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Manoel L. Costa ◽  
Arnon D. Jurberg ◽  
Claudia Mermelstein

The mechanisms involved in the development of skeletal muscle fibers have been studied in the last 70 years and yet many aspects of this process are still not completely understood. A myriad of in vivo and in vitro invertebrate and vertebrate animal models has been used for dissecting the molecular and cellular events involved in muscle formation. Among the most used animal models for the study of myogenesis are the rodents rat and mouse, the fruit fly Drosophila, and the birds chicken and quail. Here, we describe the robustness and advantages of the chick primary muscle culture model for the study of skeletal myogenesis. In the myoblast culture obtained from embryonic chick pectoralis muscle it is possible to analyze all the steps involved in skeletal myogenesis, such as myoblast proliferation, withdrawal from cell cycle, cell elongation and migration, myoblast alignment and fusion, the assembly of striated myofibrils, and the formation of multinucleated myotubes. The fact that in vitro chick myotubes can harbor hundreds of nuclei, whereas myotubes from cell lines have only a dozen nuclei demonstrates the high level of differentiation of the autonomous chick myogenic program. This striking differentiation is independent of serum withdrawal, which points to the power of the model. We also review the major pro-myogenic and anti-myogenic molecules and signaling pathways involved in chick myogenesis, in addition to providing a detailed protocol for the preparation of embryonic chick myogenic cultures. Moreover, we performed a bibliometric analysis of the articles that used this model to evaluate which were the main explored topics of interest and their contributors. We expect that by describing the major findings, and their advantages, of the studies using the embryonic chick myogenic model we will foster new studies on the molecular and cellular process involved in muscle proliferation and differentiation that are more similar to the actual in vivo condition than the muscle cell lines.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2531-2531 ◽  
Author(s):  
Elvin Wagenblast ◽  
Olga I. Gan ◽  
Maria Azkanaz ◽  
Sabrina A. Smith ◽  
Joana Araújo ◽  
...  

Leukemia is the most common cancer in children. Sequencing data from identical twins suggests that the first genetic alterations in childhood leukemia occur in utero. Children with Down syndrome (Trisomy 21, T21) have an increased risk of childhood leukemia. In 30% of newborns with Down syndrome, a transient pre-leukemia disease occurs, which is characterized by a clonal proliferation of immature megakaryocytes carrying somatic mutations in the GATA1 transcription factor. These acquired GATA1 mutations lead to the expression of an N-terminal truncated protein (GATA1-Short). In 20% of the cases, acute megakaryoblastic leukemia (AMKL) evolves from the pre-leukemia by acquisition of additional genetic mutations in the transient leukemia clone, predominantly in genes of the cohesin complex. It is hypothesized that this represents a multi-step process of leukemogenesis with three distinct genetic events: T21, GATA1-Short and additional cohesin mutations. Yet, it remains unclear how an extra copy of chromosome 21 predisposes towards leukemia, the mechanisms of leukemic transformation and the interplay between each genetic component. Therefore, we wanted to establish a tractable human model system to investigate the initiation and evolution of transient leukemia and AMKL using CRISPR/Cas9 genome editing in primary human hematopoietic stem cells (HSCs). To model the initiation of Down syndrome associated pre-leukemia, we utilized both neonatal cord blood and fetal liver derived LT-HSCs and other progenitor populations to express either the short or long isoform of GATA1 (GATA1-Short or GATA1-Long). This was carried out using an improved methodology that permits the in vitro and in vivo functional interrogation of CRISPR/Cas9 edited human LT-HSCs at the single cell level (Wagenblast et al., bioRxiv 609040). Importantly, in this case, expression of either GATA1 isoform remained under the regulatory control of the endogenous promoter. Culture of single LT-HSC, short-term (ST-HSC) and myelo-erythroid progenitors (MEP) revealed a drastic shift towards megakaryocytic lineage output upon exclusive expression of GATA1-Short compared to control or GATA1-Long, regardless of the developmental source of the derived cells. To investigate the functional consequences of exclusive GATA1-Short expression in LT-HSCs in vivo, we performed near-clonal xenotransplantation assays in NSG and NSGW41 mice. Strikingly, GATA1-Short edited LT-HSCs injected mice displayed a higher percentage of human CD41+CD45- megakaryocytic lineage derived cells and a decrease in human GlyA+CD45- erythroid cells compared to control. Morphological analysis revealed more immature forms of erythroid cells and fewer enucleated erythrocytes in GATA1-Short edited LT-HSCs injected mice. In order to add an additional genetic determinant to our model, we utilized T21 fetal liver derived LT-HSCs. Un-manipulated T21 LT-HSCs and other progenitor populations showed a bias towards erythroid, myeloid and megakaryocytic lineages at the expense of lymphoid fates. In vitro, the combination of T21 and CRISPR/Cas9-mediated GATA1-Short in LT-HSCs led to an increase in megakaryocytic lineage output, while decreasing erythroid output. This phenotype was similar to what was observed in normal karyotype fetal liver derived LT-HSCs. However, near clonal transplantation of GATA1-Short edited T21 LT-HSCs in NSG mice generated exclusive CD33+ myeloid grafts with disproportionate high levels of CD41+CD45- megakaryocytic lineage derived cells compared to T21 control. In addition a distinct CD34+CD41+CD71+CD45+ population was present. Thus, this phenotype is reminiscent of Down Syndrome associated transient leukemia. In summary, by using an improved CRISPR/Cas9 single cell methodology we show how GATA1 regulates lineage fate in normal and T21 LT-HSCs and other progenitor populations. Importantly, we show for the first time a humanized mouse model of Down syndrome associated transient leukemia, which was induced from T21 human fetal liver derived LT-HSCs engineered to express GATA1-Short. Current studies focus on adding additional mutations of the cohesin complex to progress transient leukemia to AMKL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1536-1542
Author(s):  
LJ Burns ◽  
JG Glauber ◽  
GD Ginder

An animal model of hemoglobin switching has been developed in which anemic adult chickens are treated with 5-azacytidine and sodium butyrate or alpha-aminobutyric acid, thereby resulting in activation of the embryonic rho-globin gene in adult erythroid cells. In vitro nuclear runoff transcription assays using erythroid nuclei from treated birds show that the mechanism of activation of the rho-globin gene is transcriptional whereas no transcriptional activation of the embryonic epsilon-globin gene occurs. The action of 5-azacytidine appears to be as an inhibitor of DNA methylation because other S-phase active cytotoxic drugs, when substituted for 5-azacytidine, do not cause demethylation of the embryonic globin genes, nor do they allow transcriptional activation to occur. Embryonic rho-globin gene activation in this model is not due to selection of primitive erythroid cells since a subpopulation of primitive erythroid cells is not evident either morphologically or when cells are probed for embryonic and adult globin RNA by in situ hybridization. These studies show that demethylation by 5-azacytidine is a prerequisite but not sufficient cis- regulatory event for a high level of transcriptional activation of the embryonic rho-globin gene in adult erythroid cells in vivo. The possible basis for the selective transcriptional activation by sodium butyrate in this system is discussed.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 263-268
Author(s):  
WD Hankins ◽  
J Schooley ◽  
C Eastment

Production of lymphoid and myeloid growth regulatory factors by hematopoietic cells is well documented. On the other hand, the major site of production of erythropoietin (Epo), which regulates physiologic red blood cell development, is thought to be the kidney. Here we report the isolation of multiple erythroleukemia cell lines that produce erythropoietic factors and present extensive biological, immunologic, and biochemical evidence to document that the active agent is Epo. The erythropoietic activity was neutralized by Epo antiserum and exhibited physical properties indistinguishable from those of human and sheep Epo. Positive lines produced between 0.1 and 1.5 U/mL of Epo, which stimulated erythropoiesis in vivo and in vitro in nine biological assays. Twenty sublines derived from single cells were inducible for hemoglobin and spectrin synthesis. All the sublines produced Epo. Production of the hormone continued when the cells were seeded in the absence of serum. Our finding that multiple independent isolates produce Epo raises the possibility that Epo production by erythroid precursors may play a role in normal erythropoiesis or, alternatively, that Epo gene activation may be a relatively common occurrence that contributes to, or is associated with, certain forms of virus-induced leukemias.


Blood ◽  
1986 ◽  
Vol 68 (1) ◽  
pp. 263-268 ◽  
Author(s):  
WD Hankins ◽  
J Schooley ◽  
C Eastment

Abstract Production of lymphoid and myeloid growth regulatory factors by hematopoietic cells is well documented. On the other hand, the major site of production of erythropoietin (Epo), which regulates physiologic red blood cell development, is thought to be the kidney. Here we report the isolation of multiple erythroleukemia cell lines that produce erythropoietic factors and present extensive biological, immunologic, and biochemical evidence to document that the active agent is Epo. The erythropoietic activity was neutralized by Epo antiserum and exhibited physical properties indistinguishable from those of human and sheep Epo. Positive lines produced between 0.1 and 1.5 U/mL of Epo, which stimulated erythropoiesis in vivo and in vitro in nine biological assays. Twenty sublines derived from single cells were inducible for hemoglobin and spectrin synthesis. All the sublines produced Epo. Production of the hormone continued when the cells were seeded in the absence of serum. Our finding that multiple independent isolates produce Epo raises the possibility that Epo production by erythroid precursors may play a role in normal erythropoiesis or, alternatively, that Epo gene activation may be a relatively common occurrence that contributes to, or is associated with, certain forms of virus-induced leukemias.


2020 ◽  
Author(s):  
Gege Shu ◽  
Huizhao Su ◽  
Zhiqian Wang ◽  
Shihui Lai ◽  
Yan Wang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) has an extremely poor prognosis due to the development of chemoresistance, coupled with inherently increased stemness properties. Long non-coding RNAs (LncRNAs) are key regulators for tumor cell stemness and chemosensitivity. Currently the relevance between LINC00680 and tumor progression was still largely unknown, with only one study showing its significance in glioblastoma. The study herein was aimed at identifying the role of LINC00680 in the regulation HCC stemness and chemosensitivity. Methods: QRT-PCR was used to detect the expression of LINC00680, miR-568 and AKT3 in tissue specimen and cell lines. Gain- or loss-of function assays were applied to access the function of LINC00680 in HCC cells, including cell proliferation and stemness properties. HCC stemness and chemosensitivity were determined by sphere formation, cell viability and colony formation. Luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull down assays were performed to examine the interaction between LINC00680 and miR-568 as well as that between miR-568 and AKT3. A nude mouse xenograft model was established for the in vivo study.Results: We found that LINC00680 was remarkably upregulated both in HCC tissue and cell lines. Patients with high level of LINC00680 had poorer prognosis. LINC00680 overexpression significantly enhanced HCC cell stemness and decreased in vitro and in vivo chemosensitivity to 5-fluorouracil (5-Fu), whereas LINC00680 knockdown led to opposite results. Mechanism study revealed that LINC00680 regulated HCC stemness and chemosensitivity through sponging miR-568, thereby expediting the expression of AKT3, which further activated its downstream signaling molecules, including mTOR, elF4EBP1, and p70S6K.Conclusion: LINC00680 promotes HCC stemness properties and decreases chemosensitivity through sponging miR-568 to activate AKT3, suggesting that LINC00680 might be a potentially important HCC diagnosis marker and therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document