scholarly journals The regulatory role of interleukin 2-responsive T lymphocytes on early and mature erythroid progenitor proliferation

Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610 ◽  
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

Abstract To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.

Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1161-1166 ◽  
Author(s):  
Z Estrov ◽  
C Roifman ◽  
G Mills ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

Abstract The effect of recombinant interleukin 2 (IL2) on marrow CFU-C colony formation was evaluated to define the role for T lymphocytes in human marrow granulopoiesis. The colony-stimulating factor (CSA) used in our experiments was found to contain IL2. IL2 depletion from CSA resulted in a reduction in CFU-C colony proliferation. Addition of exogenous IL2 caused an increase in CFU-C colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody (MoAb) to the IL2 receptor. Moreover, anti-Tac in the absence of exogenous IL2 resulted in an overall decrease in colony numbers. Depletion of either adherent cells or T lymphocytes abolished the effect of IL2 and anti-Tac on colony growth. In the presence of IL2, re- addition of T lymphocytes to the T-depleted marrow or adherent cells to adherent cell-depleted marrow resulted in a significant increase in CFU- C colony numbers, whereas no significant effect was found when IL2- depleted CSA was used. Although T lymphocytes were not themselves essential for CFU-C colony growth, our studies indicate that IL2 and IL2-responsive T cells can regulate in vitro granulopoiesis.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1161-1166
Author(s):  
Z Estrov ◽  
C Roifman ◽  
G Mills ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

The effect of recombinant interleukin 2 (IL2) on marrow CFU-C colony formation was evaluated to define the role for T lymphocytes in human marrow granulopoiesis. The colony-stimulating factor (CSA) used in our experiments was found to contain IL2. IL2 depletion from CSA resulted in a reduction in CFU-C colony proliferation. Addition of exogenous IL2 caused an increase in CFU-C colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody (MoAb) to the IL2 receptor. Moreover, anti-Tac in the absence of exogenous IL2 resulted in an overall decrease in colony numbers. Depletion of either adherent cells or T lymphocytes abolished the effect of IL2 and anti-Tac on colony growth. In the presence of IL2, re- addition of T lymphocytes to the T-depleted marrow or adherent cells to adherent cell-depleted marrow resulted in a significant increase in CFU- C colony numbers, whereas no significant effect was found when IL2- depleted CSA was used. Although T lymphocytes were not themselves essential for CFU-C colony growth, our studies indicate that IL2 and IL2-responsive T cells can regulate in vitro granulopoiesis.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 237-240 ◽  
Author(s):  
I Touw ◽  
B Lowenberg

Abstract The requirements of clonogenic cells of B cell-type chronic lymphocytic leukemia (B CLL) for interleukin 2 (IL 2) were analyzed. Using the cells of five patients, we measured IL 2 receptor expression on the cell surface and the colony-forming abilities of the cells in response to IL 2. In four of the cases, significant percentages of the CLL cells expressed IL 2 membrane receptors (as assessed with the monoclonal antibody anti-Tac), indicative of their potential sensitivity to IL 2. Pure recombinant interleukin 2 (r-IL2) was added to colony cultures that also contained the lectin phytohemagglutinin (PHA) or the phorbol ester 12–0-tetradecanoylphorbol-13-acetate (TPA) to activate the CLL cells. Colony formation completely depended on the presence of r-IL 2 and PHA or TPA in culture, with the exception of one case, in which the addition of IL 2 was not required for colony growth in TPA-supplemented cultures. Twenty-five to fifty units of r-IL 2 per milliliter of culture medium provided optimal stimulation. Under these conditions, a linear relationship was observed between plated cell numbers and colony numbers formed. Morphological and immunologic analysis of colony cells indicated that these were monoclonal CLL cells that had matured toward plasmacellular lymphocytes and plasma cells.


Blood ◽  
1985 ◽  
Vol 66 (1) ◽  
pp. 237-240
Author(s):  
I Touw ◽  
B Lowenberg

The requirements of clonogenic cells of B cell-type chronic lymphocytic leukemia (B CLL) for interleukin 2 (IL 2) were analyzed. Using the cells of five patients, we measured IL 2 receptor expression on the cell surface and the colony-forming abilities of the cells in response to IL 2. In four of the cases, significant percentages of the CLL cells expressed IL 2 membrane receptors (as assessed with the monoclonal antibody anti-Tac), indicative of their potential sensitivity to IL 2. Pure recombinant interleukin 2 (r-IL2) was added to colony cultures that also contained the lectin phytohemagglutinin (PHA) or the phorbol ester 12–0-tetradecanoylphorbol-13-acetate (TPA) to activate the CLL cells. Colony formation completely depended on the presence of r-IL 2 and PHA or TPA in culture, with the exception of one case, in which the addition of IL 2 was not required for colony growth in TPA-supplemented cultures. Twenty-five to fifty units of r-IL 2 per milliliter of culture medium provided optimal stimulation. Under these conditions, a linear relationship was observed between plated cell numbers and colony numbers formed. Morphological and immunologic analysis of colony cells indicated that these were monoclonal CLL cells that had matured toward plasmacellular lymphocytes and plasma cells.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 556-561 ◽  
Author(s):  
I Touw ◽  
R Delwel ◽  
R Bolhuis ◽  
G van Zanen ◽  
B Lowenberg

Abstract The role of interleukin 2 (IL 2) as a possible regulator of in vitro proliferation and differentiation of non-T acute lymphoblastic leukemia (ALL) cells was investigated. For this purpose, leukemic cells from the blood or bone marrow of eight untreated patients with common or pre-B ALL were analyzed using the anti-Tac monoclonal antibody (reactive with the IL 2 receptor) in indirect immunofluorescence. The receptors for IL 2, which were initially absent from the cell surface, were induced on high percentages of the ALL cells after the in vitro exposure to the lectin phytohemagglutinin or the phorbol ester 12-O- tetradecanoylphorbol-13-acetate in six patients, suggesting that the cells had become sensitive to IL 2. In colony cultures to which feeder leukocytes and IL 2 had been added, colony growth was obtained in five of eight cases. Whereas the cells from one patient formed colonies in the absence of exogenous stimuli, the cells from others were dependent on the addition of feeder leukocytes plus IL 2. In the latter cases, feeder leukocytes alone, releasing some IL 2, stimulated growth suboptimally at different cell concentrations. Their stimulative effect was significantly enhanced when leukocyte-derived IL 2 or pure recombinant IL 2 was supplemented. Alone, IL 2 (up to 500 U/mL) did not support colony formation. Apparently, IL 2 and feeder leukocytes are both required for the induction of colonies in these cases of ALL. From cell sorting of fluorescent anti-common ALL antigen (CALLA) stained cells it appeared that colonies descended from cells with high as well as low or negative CALLA expression. Immunophenotyping demonstrated the presence of the original leukemia markers on colony cells, but was not indicative of maturation of ALL toward more differentiated B cells. We suggest that IL 2 can stimulate the in vitro proliferation of certain neoplastic B lymphocyte progenitors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3135-3135
Author(s):  
Loïc Garçon ◽  
Chloe James ◽  
Catherine Lacout ◽  
Valérie Camara-Clayette ◽  
Valérie Ugo ◽  
...  

Abstract In contrast with secondary erythrocytosis, progenitor cells from polycythemia vera (PV) patients can undergo in vitro erythroid differentiation despite absence of erythropoietin (EPO) and presence of such endogenous erythroid colonies (EEC) is routinely used as a diagnostic assay. Recent focus on the JAK2 mutation V617F in PV patients argue for a direct implication of JAK2 dependent signaling pathways in EEC formation. Because STAT5 is the principal target of JAK2 in erythroid cells, we investigated whether EEC formation was only dependent on STAT5 activation or required other signaling pathways that would be activated by JAK2. For this purpose, we transduced a retroviral vector coding for a constitutively active form of STAT5 (MIGR-STAT5CA) in UT7 cells, a leukemic cell line with erythroid properties. We observed in cells transduced with the MIGR-STAT5CA vector a spontaneous induction of erythroid differentiation in comparison with cells infected with the empty vector MIGR, as assessed by GPA staining. We next investigated effects of STAT5CA on erythroid differentiation of human primary progenitors. Purified CD34+ cells obtained from peripheral blood (PB) of patients treated with G-CSF were transduced with the STA5CA vector, the CD36+/GPA− erythroid progenitor cells were sorted and cultured in presence of SCF alone. When expressing STAT5CA, they both proliferate and undergo erythroid terminal differentiation despite the absence of EPO. We concluded that a phosphorylated form of STAT5 was sufficient to support in vitro erythroid differentiation of human primary cells. Because STAT5 has been shown to play a crucial role in erythropoiesis via induction of the antiapoptotic protein Bcl-xL, we next investigated whether effects of STAT5CA on erythroid maturation was dependent on Bcl-xL induction. Tansduction of human CD36+/GPA− cells with a retrovirus containing the coding sequence of human Bcl-xL progenitors allowed survival, proliferation and GPA acquisition despite the absence of EPO. We next investigated whether STAT5CA or Bcl-xL overexpression in normal primary cells could reproduce the malignant phenotype observed in PV patients, i.e. induction of EEC formation. CD36+/GPA− transduced with either the STAT5 CA or the Bcl-XL vectors were plated in methylcellulose in the absence of EPO. Bcl-xL as well as STAT5CA vectors could both induce endogenous erythroid colony formation. Regardless to these results, we hypothesized that the EEC formation observed in myeloproliferative disorders could be at least partially due to the JAK2 dependent activation of the STAT5/Bcl-XL pathway. Thus, both constitutive activation of STAT5 and Bcl-xL overexpression could substitute to EPO to induce terminal differentiation of human primary erythroid progenitors.


Blood ◽  
1989 ◽  
Vol 74 (7) ◽  
pp. 2376-2382 ◽  
Author(s):  
CM Niemeyer ◽  
CA Sieff ◽  
BR Smith ◽  
KA Ault ◽  
DG Nathan

Abstract The role of natural killer (NK) lymphocytes in the regulation of human hematopoiesis is controversial. NK-mediated inhibition of colony formation of hematopoietic progenitor cells has been irregularly reported for various cell lineages. In an effort to clarify such disparate findings, we studied the interaction of clearly defined NK and partially purified progenitor cell populations. Cell sorter purified CD16 positive blood NK cells and enriched autologous marrow progenitors were co-incubated at various lymphocyte to marrow cell ratios and then cultured in methylcellulose. There was no inhibition of myeloid, erythroid, or mixed colony formation. Similarly, activation of CD16 positive lymphocytes by interleukin-2 (IL-2) before co-incubation and co-culture did not result in inhibition of colony formation. Furthermore, in a newly designed assay system, we demonstrated that NK cells, which did not modulate colony-formation, remained capable of recognizing and killing rare K562 target cells seeded within the marrow cell population. Our results indicate that unstimulated and IL-2 activated isolated blood NK cells coexist with functioning autologous marrow progenitors in vitro.


Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 556-561
Author(s):  
I Touw ◽  
R Delwel ◽  
R Bolhuis ◽  
G van Zanen ◽  
B Lowenberg

The role of interleukin 2 (IL 2) as a possible regulator of in vitro proliferation and differentiation of non-T acute lymphoblastic leukemia (ALL) cells was investigated. For this purpose, leukemic cells from the blood or bone marrow of eight untreated patients with common or pre-B ALL were analyzed using the anti-Tac monoclonal antibody (reactive with the IL 2 receptor) in indirect immunofluorescence. The receptors for IL 2, which were initially absent from the cell surface, were induced on high percentages of the ALL cells after the in vitro exposure to the lectin phytohemagglutinin or the phorbol ester 12-O- tetradecanoylphorbol-13-acetate in six patients, suggesting that the cells had become sensitive to IL 2. In colony cultures to which feeder leukocytes and IL 2 had been added, colony growth was obtained in five of eight cases. Whereas the cells from one patient formed colonies in the absence of exogenous stimuli, the cells from others were dependent on the addition of feeder leukocytes plus IL 2. In the latter cases, feeder leukocytes alone, releasing some IL 2, stimulated growth suboptimally at different cell concentrations. Their stimulative effect was significantly enhanced when leukocyte-derived IL 2 or pure recombinant IL 2 was supplemented. Alone, IL 2 (up to 500 U/mL) did not support colony formation. Apparently, IL 2 and feeder leukocytes are both required for the induction of colonies in these cases of ALL. From cell sorting of fluorescent anti-common ALL antigen (CALLA) stained cells it appeared that colonies descended from cells with high as well as low or negative CALLA expression. Immunophenotyping demonstrated the presence of the original leukemia markers on colony cells, but was not indicative of maturation of ALL toward more differentiated B cells. We suggest that IL 2 can stimulate the in vitro proliferation of certain neoplastic B lymphocyte progenitors.


Sign in / Sign up

Export Citation Format

Share Document