scholarly journals Common and pre-B acute lymphoblastic leukemia cells express interleukin 2 receptors, and interleukin 2 stimulates in vitro colony formation

Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 556-561
Author(s):  
I Touw ◽  
R Delwel ◽  
R Bolhuis ◽  
G van Zanen ◽  
B Lowenberg

The role of interleukin 2 (IL 2) as a possible regulator of in vitro proliferation and differentiation of non-T acute lymphoblastic leukemia (ALL) cells was investigated. For this purpose, leukemic cells from the blood or bone marrow of eight untreated patients with common or pre-B ALL were analyzed using the anti-Tac monoclonal antibody (reactive with the IL 2 receptor) in indirect immunofluorescence. The receptors for IL 2, which were initially absent from the cell surface, were induced on high percentages of the ALL cells after the in vitro exposure to the lectin phytohemagglutinin or the phorbol ester 12-O- tetradecanoylphorbol-13-acetate in six patients, suggesting that the cells had become sensitive to IL 2. In colony cultures to which feeder leukocytes and IL 2 had been added, colony growth was obtained in five of eight cases. Whereas the cells from one patient formed colonies in the absence of exogenous stimuli, the cells from others were dependent on the addition of feeder leukocytes plus IL 2. In the latter cases, feeder leukocytes alone, releasing some IL 2, stimulated growth suboptimally at different cell concentrations. Their stimulative effect was significantly enhanced when leukocyte-derived IL 2 or pure recombinant IL 2 was supplemented. Alone, IL 2 (up to 500 U/mL) did not support colony formation. Apparently, IL 2 and feeder leukocytes are both required for the induction of colonies in these cases of ALL. From cell sorting of fluorescent anti-common ALL antigen (CALLA) stained cells it appeared that colonies descended from cells with high as well as low or negative CALLA expression. Immunophenotyping demonstrated the presence of the original leukemia markers on colony cells, but was not indicative of maturation of ALL toward more differentiated B cells. We suggest that IL 2 can stimulate the in vitro proliferation of certain neoplastic B lymphocyte progenitors.

Blood ◽  
1985 ◽  
Vol 66 (3) ◽  
pp. 556-561 ◽  
Author(s):  
I Touw ◽  
R Delwel ◽  
R Bolhuis ◽  
G van Zanen ◽  
B Lowenberg

Abstract The role of interleukin 2 (IL 2) as a possible regulator of in vitro proliferation and differentiation of non-T acute lymphoblastic leukemia (ALL) cells was investigated. For this purpose, leukemic cells from the blood or bone marrow of eight untreated patients with common or pre-B ALL were analyzed using the anti-Tac monoclonal antibody (reactive with the IL 2 receptor) in indirect immunofluorescence. The receptors for IL 2, which were initially absent from the cell surface, were induced on high percentages of the ALL cells after the in vitro exposure to the lectin phytohemagglutinin or the phorbol ester 12-O- tetradecanoylphorbol-13-acetate in six patients, suggesting that the cells had become sensitive to IL 2. In colony cultures to which feeder leukocytes and IL 2 had been added, colony growth was obtained in five of eight cases. Whereas the cells from one patient formed colonies in the absence of exogenous stimuli, the cells from others were dependent on the addition of feeder leukocytes plus IL 2. In the latter cases, feeder leukocytes alone, releasing some IL 2, stimulated growth suboptimally at different cell concentrations. Their stimulative effect was significantly enhanced when leukocyte-derived IL 2 or pure recombinant IL 2 was supplemented. Alone, IL 2 (up to 500 U/mL) did not support colony formation. Apparently, IL 2 and feeder leukocytes are both required for the induction of colonies in these cases of ALL. From cell sorting of fluorescent anti-common ALL antigen (CALLA) stained cells it appeared that colonies descended from cells with high as well as low or negative CALLA expression. Immunophenotyping demonstrated the presence of the original leukemia markers on colony cells, but was not indicative of maturation of ALL toward more differentiated B cells. We suggest that IL 2 can stimulate the in vitro proliferation of certain neoplastic B lymphocyte progenitors.


Blood ◽  
1978 ◽  
Vol 52 (4) ◽  
pp. 712-718 ◽  
Author(s):  
SD Smith ◽  
EM Uyeki ◽  
JT Lowman

Abstract An assay system in vitro for the growth of malignant lymphoblastic colony-forming cells (CFC) was established. Growth of malignant myeloblastic CFC has been previously reported, but this is the first report of growth of malignant lymphoblastic CFC. Established assay systems in vitro have been very helpful in elucidating the control of growth and differentiation of both normal and malignant bone marrow cells. Lymphoblastic CFC were grown from the bone marrow aspirates of 20 children with acute lymphoblastic leukemia. Growth of these colonies was established on an agar assay system and maintained in the relative hypoxia (7% oxygen) of a Stulberg chamber. The criteria for malignancy of these colonies was based upon cellular cytochemical staining characteristics, the presence of specific cell surface markers, and the ability of these lymphoid cells to grow without the addition of a lymphoid mitogen. With this technique, specific nutritional requirements and drug sensitivities can be established in vitro, and these data may permit tailoring of individual antileukemic therapy.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1407-1411 ◽  
Author(s):  
M Maeda ◽  
N Arima ◽  
Y Daitoku ◽  
M Kashihara ◽  
H Okamoto ◽  
...  

Abstract Interleukin 2 (IL-2) receptor/Tac antigen is abnormally expressed on cells of patients with adult T cell leukemia (ATL) caused by infection with human T lymphotropic virus type I (HTLV-I). Twenty-five patients with ATL were examined to determine whether their leukemic cells continued to show IL-2-dependent proliferation. In 21 patients, the in vitro proliferation of HTLV-I-infected nonleukemic T cell clones was found to be dependent on IL-2. However, clonality analysis based on T cell receptor gene rearrangement profiles and the site of HTLV-I provirus integration revealed IL-2-dependent growth in leukemic cells in four patients with ATL. These results provide evidence for the IL-2- dependent proliferation of leukemic cells in some ATL patients.


Blood ◽  
1989 ◽  
Vol 74 (4) ◽  
pp. 1355-1359 ◽  
Author(s):  
MX Zhou ◽  
HW Jr Findley ◽  
AH Ragab

Abstract We are reporting here that low-mol wt B-cell growth factor (LMW-BCGF) and recombinant interleukin-2 (rIL-2) are together able to induce CD3+ cytotoxic T lymphocytes (CTL) with lymphokine-activated killer cell (LAK) activity from the bone marrow (BM) cells of children with acute lymphoblastic leukemia (ALL). Ficoll-Hypaque (FH)-separated BM cells were obtained from patients with active disease (at diagnosis N = 13, in relapse N = 15) and in complete remission (CR; N = 12). CD3+ cells were removed by Leu-4 antibody and immunobeads. Cells were cultured (10(5) cells/mL) in semisolid media with rIL-2 (100 mu/mL), LMW-BCGF (0.1 mu/mL), and the combination of rIL-2 plus LMW-BCGF, respectively, for seven to ten days. Pooled colonies were harvested for phenotyping. LMW-BCGF plus rIL-2 induced large numbers of CD3+ colonies from CD3- precursors. rIL-2 alone did not induce colony formation. In addition, cells were cultured in liquid media with LMW-BCGF, rIL-2, and the combination of LMW-BCGF plus rIL-2, respectively, for seven to 21 days. They were harvested for phenotyping, and cytotoxicity assays were performed v K562, Raji, and autologous leukemic cells. LMW-BCGF plus rIL-2 induced significant expansion of CD3+ cells from CD3- precursors, and these cells were activated to kill autologous leukemic cells in addition to Raji and K562 cell lines. LMW-BCGF or rIL-2 alone did not induce significant expansion or activation of cytotoxic CD3- cells. Our hypothesis is that LMW-BCGF plus rIL-2 stimulates the proliferation and activation of CD3- precursors from the BM cells of children with acute leukemia to become CD3+ cells that have LAK activity. This finding may have therapeutic implications.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1607-1610
Author(s):  
Z Estrov ◽  
C Roifman ◽  
YP Wang ◽  
T Grunberger ◽  
EW Gelfand ◽  
...  

To analyze the role of T lymphocytes in human erythropoiesis, we evaluated the effect of recombinant interleukin 2 (IL 2) on marrow CFU- E and BFU-E colony formation in vitro. IL 2 resulted in an increase in CFU-E and BFU-E colony numbers in a dose-dependent manner. This increase could be prevented by anti-Tac, a monoclonal antibody to the IL 2 receptor. Moreover, anti-Tac on its own resulted in an overall decrease in colony numbers. Depletion of marrow adherent cells did not alter the effect of either IL 2 or anti-Tac on colony growth. Following the removal of marrow T lymphocytes, CFU-E and BFU-E colony formation proceeded normally; however, the effects of IL 2 and anti-Tac were markedly diminished. Readdition of T lymphocytes to the cultures restored the IL 2 effect. Although T lymphocytes were not themselves essential for in vitro erythropoiesis, our studies suggest that IL 2 and IL 2-responsive T cells can regulate both early and mature stages of erythroid differentiation.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 132-138 ◽  
Author(s):  
B Wormann ◽  
SR Mehta ◽  
AL Maizel ◽  
TW LeBien

Experiments were conducted to determine the effect of low mol wt B cell growth factor (L-BCGF) on B cell precursor acute lymphoblastic leukemia (ALL). L-BCGF induced a significant increase in 3H-TdR incorporation in 28 of 37 bone marrow aspirates from patients with B cell precursor ALL, with stimulation indices ranging from 2 to 129. Fluorescence-activated cell sorting confirmed that in five of seven patients the common acute lymphoblastic leukemia antigen (CALLA)/CD10 positive leukemic cells were responding directly to L-BCGF. L-BCGF was capable of inducing, in some patients, an increase in absolute viable cells and could also induce colony formation in vitro. The response of B cell precursor ALL was not attributable to beta IL 1, IL 2, or gamma interferon. These results indicate that the majority of B cell precursor ALL undergo a proliferative response to L-BCGF, suggesting a regulatory role for this lymphokine in the growth of B cell precursors.


Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1182-1192 ◽  
Author(s):  
F Mentz ◽  
F Ouaaz ◽  
A Michel ◽  
C Blanc ◽  
P Herve ◽  
...  

Abstract In this study, we have investigated the ability of various cytokines to induce the maturation of acute lymphoblastic leukemia (T-ALL) cells with early T-cell phenotype. Leukemic blasts from 17 untreated T-ALL patients were assayed for their ability to acquire mature T-cell markers, CD3/T-cell receptor (TCR) in particular, after incubation with one or a combination of recombinant human interleukin-1 (IL-1), IL-2, IL-4, IL-7, and CD2-specific monoclonal antibody (MoAb). IL-7 or IL-2 induced the proliferation of some leukemic cells, whereas sequential cell treatment with CD2-MoAb and then IL-2 promoted CD3/TCR expression on nearly all CD2+ cells (15 of 16), except for 1 T-ALL that developed into CD3-CD16+CD56+ cells. Differentiation of T-ALL cells was also evidenced through the downregulation of CD34 precursor cell antigen, the generation of CD4+ and CD8+ cells from CD4+ CD8+ precursors, and the acquisition of mature T-cell functions. CD2 ligation induced a progressive increase of surface expression of IL-2 receptor alpha (IL- 2R alpha) and IL-2R beta and an accelerated in vitro death of leukemic cells. The ligation of IL-2R by IL-2 rescued T-ALL cells from death and promoted their progression toward more mature cells expressing extracellular CD3/TCR alpha beta complexes. Intracellular analysis indicates that TCR alpha transcription and membrane translocation of both TCR alpha and TCR beta were promoted in these conditions. Analysis of intracellular signals transduced during T-ALL differentiation indicated that CD2-ligation induced Ca2+ influx and that the ligation of CD2 and IL-2R induced distinct tyrosine phosphorylation patterns. The addition of inhibitors of tyrosine phosphorylation abolished T-ALL cell differentiation, which suggests the involvement of tyrosine kinases in this phenomenon. Together, we showed the constant maturation of leukemic early T cells after stimulation of surface CD2 and the high- affinity IL-2R.


Blood ◽  
1981 ◽  
Vol 58 (1) ◽  
pp. 141-152 ◽  
Author(s):  
J Ritz ◽  
JM Pesando ◽  
SE Sallan ◽  
LA Clavell ◽  
J Notis-McConarty ◽  
...  

Abstract We tested the efficacy of passive serotherapy in the treatment of acute lymphoblastic leukemia in four patients who had relapsed while receiving standard chemotherapeutic agents. Each patient received multiple intravenous infusions of J-5 monoclonal antibody specific for common acute lymphoblastic leukemia antigen (CALLA). In the three patients with circulating leukemic cells, there was a rapid decrease in circulating blasts that began immediately after antibody infusion, but not all leukemic cells were cleared, and remaining cells appeared to be resistant to further serotherapy. Although J-5 antibody was also demonstrable on bone marrow lymphoblasts immediately after antibody infusion in one patient, there was no change in bone marrow cellularity or differential during serotherapy. Analysis of the cell surface phenotype of leukemic cells during serotherapy and in vitro studies with patient cells suggests that resistance to serotherapy was mediated in part by antigenic modulation of CALLA in response to J-5 antibody.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 860-860
Author(s):  
Inge M. Appel ◽  
Karin M. Kazemier ◽  
Anjo J.P. Veerman ◽  
Elisabeth van Wering ◽  
Monique L. Den Boer ◽  
...  

Abstract L-Asparaginase is an effective drug for treatment of children with acute lymphoblastic leukemia. The effectiveness is generally thought to result from a rapid depletion of asparagine in serum and cells. Several studies have shown that in vitro resistance to this drug is an independent prognostic factor in ALL. We investigated the clinical response of one in vivo dose of 1000 IU/m2 PEG-Asparaginase and its pharmacokinetic and pharmacodynamic effects in children with newly diagnosed ALL before the start of combination chemotherapy. 57 children (36M / 21F) were enrolled in the study: 2 pro B-ALL, 38 common/ pre B-ALL and 17 T-ALL. Genotyping of precursor B-ALL revealed 11 hyperdiploid, 8 TELAML1 positive, 2 BCRABL positive, no MLL rearrangement, 8 normal, 11 others. The clinical response to PEG-Asparaginase on day 0 (5 days after the PEG-Asparaginase infusion) was defined as good when the number of leukemic cells of peripheral blood was < 1 × 109/L, as intermediate when leukemic cells were 1-10 × 109/L, and as poor when leukemic cells were > 10 × 109/L. The in vivo window response was significantly related to immunophenotype and genotype: 26/38 common / pre B-ALL cases, especially those with hyperdiploidy and TELAML1 rearrangement, demonstrated a good clinical response compared to 8/17 T-ALL (p=0.01). Both BCRABL positive ALL cases showed a poor response (p=0.04). A poor in vivo clinical window response was related to in vitro resistance to L-Asparaginase (p=0.02) and both in vitro as well as in vivo response were prognostic factors for long-term event-free survival (Hazard ratio 6.4; p=0.004, and Hazard ratio 3.7; p=0.01, respectively). The L-Asparaginase activity in the serum was >100 IU/L for at least 15 days. The asparagine levels remained below the detection limit of 0.2 mM for at least 26 days with a concomitant rise in serum aspartate and glutamate. These findings confirm that PEG-Asparaginase will yield its pharmacodynamic effects for 2-4 weeks. After administration of one in vivo dose of 1000 IU/m2 PEG-Asparaginase no changes in apoptotic parameters or changes in intracellular levels of twenty amino acids in leukemic cells could be measured, in contradiction to the changes found after in vitro exposure. This may be explained by the rapid removal of apoptotic cells from the circulation in vivo. Otherwise it is possible that in vivo mesenchymal cells from the bone marrow supply leukemic blasts with asparagine in response to treatment with L-Asparaginase. Conclusion: The clinical response to one dose of 1000 IU/m2 PEG-Asparaginase intravenously is related to phenotype and genotype and predicts outcome. These results suggest that children with ALL with a poor clinical response to PEG-Asparaginase might benefit from a more intensive antileukemic therapy.


Sign in / Sign up

Export Citation Format

Share Document