scholarly journals Detection of in vitro and in vivo cleavage of high molecular weight kininogen in human plasma by immunoblotting with monoclonal antibodies

Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 455-462 ◽  
Author(s):  
M Berrettini ◽  
B Lammle ◽  
T White ◽  
MJ Heeb ◽  
HP Schwarz ◽  
...  

Purified human high-mol-wt kininogen (HMWK), the cofactor of the contact phase of blood coagulation, migrated as a single band (approximately 110,000 mol wt) in a continuous buffer sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), but appeared as two separated bands (approximately 120,000 and 105,000 mol wt) when analyzed in a discontinuous buffer SDS-PAGE system. After elution from SDS polyacrylamide gels, each of the two bands showed coagulant activity. Six murine monoclonal antibodies (Mabs) against HMWK were produced and purified. In immunoblotting studies, three Mabs bound to the isolated alkylated heavy chain and one to the alkylated light chain of HMWK, whereas the remaining two bound only to the single-chain or unreduced two-chain molecule. None of the Mabs inhibited the clotting activity of HMWK or its binding to kaolin. Two of the Mabs, one directed against the light chain and one against the heavy chain, were used as specific probes to study HMWK in plasma samples using an immunoblotting technique. The anti-light chain Mab identified two distinct bands (approximately 120,000 and approximately 105,000 mol wt) in normal human plasma, but not in plasma from patients with hereditary HMWK deficiency. The anti-heavy chain Mab detected two additional bands (approximately 60,000 and approximately 54,000 mol wt) corresponding to low-mol-wt kininogen (LMWK) in normal plasma. A sensitive and specific quantitative immunoblotting assay of HMWK antigen in plasma was developed. Moreover, the immunoblotting technique with the anti-light chain Mab was used to detect the cleavage of HMWK in plasma samples after in vitro or in vivo activation of the contact system. The anti- light chain Mab demonstrated in vivo activation and cleavage of HMWK during an angioedema attack in a patient with hereditary angioedema and C1-inhibitor deficiency.

Blood ◽  
1986 ◽  
Vol 68 (2) ◽  
pp. 455-462 ◽  
Author(s):  
M Berrettini ◽  
B Lammle ◽  
T White ◽  
MJ Heeb ◽  
HP Schwarz ◽  
...  

Abstract Purified human high-mol-wt kininogen (HMWK), the cofactor of the contact phase of blood coagulation, migrated as a single band (approximately 110,000 mol wt) in a continuous buffer sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), but appeared as two separated bands (approximately 120,000 and 105,000 mol wt) when analyzed in a discontinuous buffer SDS-PAGE system. After elution from SDS polyacrylamide gels, each of the two bands showed coagulant activity. Six murine monoclonal antibodies (Mabs) against HMWK were produced and purified. In immunoblotting studies, three Mabs bound to the isolated alkylated heavy chain and one to the alkylated light chain of HMWK, whereas the remaining two bound only to the single-chain or unreduced two-chain molecule. None of the Mabs inhibited the clotting activity of HMWK or its binding to kaolin. Two of the Mabs, one directed against the light chain and one against the heavy chain, were used as specific probes to study HMWK in plasma samples using an immunoblotting technique. The anti-light chain Mab identified two distinct bands (approximately 120,000 and approximately 105,000 mol wt) in normal human plasma, but not in plasma from patients with hereditary HMWK deficiency. The anti-heavy chain Mab detected two additional bands (approximately 60,000 and approximately 54,000 mol wt) corresponding to low-mol-wt kininogen (LMWK) in normal plasma. A sensitive and specific quantitative immunoblotting assay of HMWK antigen in plasma was developed. Moreover, the immunoblotting technique with the anti-light chain Mab was used to detect the cleavage of HMWK in plasma samples after in vitro or in vivo activation of the contact system. The anti- light chain Mab demonstrated in vivo activation and cleavage of HMWK during an angioedema attack in a patient with hereditary angioedema and C1-inhibitor deficiency.


1985 ◽  
Vol 101 (6) ◽  
pp. 2055-2062 ◽  
Author(s):  
F M Brodsky

Clathrin was isolated from detergent-solubilized, biosynthetically radiolabeled cells by immunoprecipitation with anti-clathrin monoclonal antibodies. Immunoprecipitates obtained after pulse-chase labeling demonstrated that after biosynthesis the LCa light chain of clathrin could be found either complexed to heavy chain or in a free pool (not associated with heavy chain) which decreased steadily over time. More than half of the free LCa disappeared within the first hour after biosynthesis, but some was still detectable after several hours. Incorporation of clathrin LCa light chain and heavy chain into coated vesicles was coordinate and increased up to 4 h after biosynthesis. Comparison of these kinetics suggested that once incorporated into coated vesicles, LCa and heavy chain did not dissociate, even during depolymerization of the vesicle. There was also little apparent degradation of clathrin found in coated vesicles for up to 22 h after biosynthesis. Immunoprecipitation with anti-clathrin monoclonal antibodies was carried out after fractionation of continuously radiolabeled cell lysates using two different sizing columns. These experiments indicated that the triskelion form of clathrin that has been isolated from coated vesicles in vitro also exists in vivo. They also confirmed the existence of a transient but detectable pool of newly synthesized free LCa light chain.


1994 ◽  
Vol 71 (01) ◽  
pp. 054-061 ◽  
Author(s):  
Mayumi Ono ◽  
Hiroyuki Fujiwara ◽  
Takaaki Okafuji ◽  
Tomoko Enjoh ◽  
Katsuhiko Nawa

SummaryIn order to elucidate the role of protein C (PC) in the rat, we expressed, purified, and characterized recombinant rat PC. The purified recombinant rat PC was 70–90% two-chain (41 kDa heavy chain; 22 and 23 kDa light chain) and 10–30% single-chain (61 kDa). Amino acid analysis confirmed the presence of 10 moles of γ-carboxyglutamic acid residues per mol of protein. For comparison, plasma rat PC was purified from a barium citrate precipitate using similar method. Plasma rat PC was a two-chain form (41 kDa heavy chain; 22 kDa light chain) with no detectable single-chain nor 23 kDa light chain. For determination of the in vitro secreted species, primary cultured rat hepatocytes were incubated for 6 h with methionine-free MEM containing vitamin K1, aprotinin, and [35S]methionine. The supernatant was immunoprecipitated and analyzed by SDS-PAGE followed by autoradiography. Approximately 90% of the PC radioactivity migrated as a two-chain molecule. These results indicate that rat PC is secreted mainly as a two-chain molecule from the liver. PROTAC-activated forms of recombinant rat PC, plasma rat PC, and plasma human PC hydrolyzed the S-2366 chromogenic substrate at the same rate Recombinant rat PC was also activated by the thrombin-thrombomodulin complex at a rate similar to plasma lat PC. The anticoagulant activities of the three activated PCs were examined in rat plasma. Both recombinant and plasma rat PC prolonged the activated partial thromboplastin time in a dose-dependent manner, but plasma human PC was less effective. These results suggest that recombinant rat PC is applicable for in vivo thrombosis studies in the rat.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250265
Author(s):  
Hubert Hayden ◽  
Nahla Ibrahim ◽  
Johannes Klopf ◽  
Branislav Zagrapan ◽  
Lisa-Marie Mauracher ◽  
...  

Over the past years, neutrophil extracellular traps (NETs) were shown to contribute to states of acute and chronic inflammatory disease. They are composed of expelled chromatin and decorated by neutrophil-derived proteins. Therefore, the analysis of DNA complexes with myeloperoxidase (MPO) by ELISA has become an attractive tool to measure NET formation in in vitro and in vivo samples. When we used a published MPO-DNA ELISA protocol and included an isotype control for the anti-MPO coating antibody, we observed high assay specificity for in vitro prepared NET samples, whereas the specificity for in vivo plasma samples was low. In addition, the assay failed to detect in vitro generated MPO-DNA complexes when spiked into plasma. Therefore, we set out to improve the specificity of the MPO-DNA ELISA for plasma samples. We found that the use of Fab fragments or immunoglobulins from different species or reversal of the antibody pair led to either a high background or a low dynamic range of detection that did not improve the specificity for plasma samples. Also, the use of higher plasma dilutions or pre-clearing of plasma immunoglobulins were ineffective. Finally, we found that a commercial reagent designed to block human anti-mouse antibodies and multivalent substances increased the detection window between the MPO antibody and isotype control for highly diluted plasma. We applied this modified ELISA protocol to analyze MPO-DNA complexes in human blood samples of acute and chronic inflammatory conditions. While markers of neutrophil activation and NET formation such as MPO, elastase and citrullinated histone H3 correlated significantly, we observed no correlation with the levels of MPO-DNA complexes. Therefore, we conclude that ELISA measurements of MPO-DNA complexes in human plasma are highly questionable regarding specificity of NET detection. In general, plasma analyses by ELISA should more frequently include isotype controls for antibodies to demonstrate target specificity.


1987 ◽  
Author(s):  
J Abbink ◽  
J Nuijens ◽  
C Huijbregts ◽  
E Hack

Monoclonal antibodies (mAbs) were raised against human a2M. Five mAbs that bound to α2M in ELISA were further analyzed by a radioimmunoassay (RIA) for their reaction with three types of α2M: native α2M, chemically inactivated α2M (iα2M) (methylamine treated), and proteolytically iα2M. One mAb reacted with all forms of α2M, while four mAbs bound both forms of ia2M but not native α2M. One of these latter mAbs (Ml) was used to develop a RIA (the Ml-assay) for the detection of iα2M in plasma: Ml coupled to Sepharose is incubated with the plasma to be tested, and bound iα2M is detected by a subsequent incubation with polyclonal 125I-anti-α2M antibodies. As little as 5 ng of iα2M can be detected with this assay in the presence of an excess of native α2M. This assay was then applied to measure inactivation of α2M in vitro and in vivo. In vitro activation of the contact system in plasma by dextran sulfate results in the inactivation of ca 10% of α2M. When blood from normal donors was collected under optimal conditions, about 0.5% of the total α2M content appeared to be iα2M. Longitudinal studies in patients (a.o. with septicaemie, during cardiopulmunary bypass) revealed that increased levels of iα2M occurred sporadically. The Ml-assay appears to be useful to monitor the role of α2M in human diseases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4034-4034
Author(s):  
Lingxia Chen ◽  
Juan Li ◽  
Hui Lu ◽  
Haiyan Jiang ◽  
Rita Sarkar ◽  
...  

Abstract Blood coagulation Factor VIII (FVIII) is secreted as a heterodimer consisting of a heavy and light chain. Both in vitro and in vivo studies have demonstrated that these chains can be expressed independently. The expressed heavy and light chains can reassociate with recovery of biological activities. These observations have been particularly useful in a gene therapy setting since vector packaging capacity for adeno-associated virus (AAV) is a limiting factor. However, it has been demonstrated that the FVIII heavy chain is expressed ~10–100-fold less efficiently compared to the light chain when expressed independently. Previously the FVIII F309S mutation in the context of B-domainless FVIII (FVIII-BDD) and enhanced glycosylations within the B-domain have been shown to improve factor VIII expression and secretion. However, our in vitro studies indicate that these improvements in secretion were not retained when expressing the heavy chain alone with the same modifications. Other sequences, possibly in the light chain, may facilitate secretion. To investigate this further, we designed an intein trans-splicing strategy to control the addition of light chain to the heavy chain before secretion. Using HEK293 cells, we cotransfected seperate intein light chain and intein heavy chain plasmids and compared results to single plasmid transfected cells. 48 hours post-transfection, FVIII-specific ELISA results demonstrated that cotransfection of intein heavy chain and intein light chain had a significant influence on total heavy chain secretion compared to intein heavy chain expression alone. The co-transfected intein heavy chain and intein light chain were efficiently ligated together yielding a biologically active single chain FVIII derivative as demonstrated by clotting assays and Western blot analysis. Therefore, heavy chain secretion was directly enhanced by the attachment of the light chain to the C-terminus of the heavy chain. A similar phenomenon was not found when heavy and light chains were simply co-expressed in the same cell. It suggested that light chain functioned in cis. Hydrodynamic injection of plasmids with intein heavy chain and intein light chain into hemophilia A mice led to a much higher level of FVIII secretion. The amount of functional FVIII expression reached 3–6 units/ml at peak level. In the absence of intein light chain, FVIII heavy chain secretion was approximately 100 fold less efficient in vivo. To map the key elements of FVIII light in helping FVIII secretion, we made deletion variants in the light chain. These mutants had a dominant negative effect in reducing FVIII and FVIII heavy chain secretion while increasing the level of intracellular FVIII accumulation. Collectively our results are consistent with the conclusion that the FVIII light chain plays a critical role in facilitating heavy chain secretion in cis; probably through helping FVIII heavy chain maintain correct configuration and folding. The strategy to manipulate FVIII light chain addition through intein mediated trans-splicing reaction may also be explored for human gene therapy.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5722-5722
Author(s):  
Xun Ma ◽  
Ping Zhou ◽  
Monika Pilichowska ◽  
Chakra P Chaulagain ◽  
Sandy Wong ◽  
...  

Abstract Background Ig light chain (LC) diseases such as AL amyloidosis and monoclonal light-chain deposition disease are caused by pathologic free LC. Treatment is aimed at eliminating LC production but success is limited. RNA interference (RNAi) can stop LC production but the diversity of LC variable region sequences poses a challenge that targeting consensus sequences in the constant region (CR) of LC mRNA may overcome (Blood 2014;123:3440). We have developed siRNA pools designed to target the κ or λ LC CR mRNA in human plasma cells and impair LC production and secretion, and have shown that the pool targeting the λ LC CR can do so, and can also trigger a terminal unfolded protein response in clones producing intact Ig due to intracellular accumulation of unpaired heavy chains (ibid). Here we report the results of continued in vitro and in vivo testing of these pools in patient specimens and in a murine xenograft model. Methods Pools of siRNA for the κ or λ LC CR (si[IGLCκCR], si[IGLCλCR]) were custom produced with a non-target control (si[-]). They were introduced in vitro into human plasma cells by an optimized streptolysin O-based method (SLO) and in a NOD.SCID xenograft flank plasmacytoma model by in vivo electroporation as per Gene Therapy 2011;18:1150. In vitro we evaluated LC gene expression, production and secretion at 24 hours in human myeloma cell lines and CD138-selected specimens from patients with plasma cell neoplasms, using real-time PCR (qPCR) for LC mRNA, flow cytometry for intracellular LC mean fluorescence intensity (MFI) and ELISA (Bethyl Laboratories) for LC secretion in 24-hour suspension cultures (106 cells/ml). In vivo we inoculated each of the flanks of NOD.SCID mice with 107 human myeloma cells (ALMC-1 or ALMC-2). When plasmacytomas were 0.5cm3 we injected si[IGLCλCR] or si[-] one time to each flank plasmacytoma respectively, allowing each mouse to serve as its own control. Two days later, the mice were sacrificed and the plasmacytomas excised for qPCR for λ LC mRNA and serum was obtained to measure human λ LC levels by ELISA. Results We have previously described results with siRNA targeting the λ LC CR in human cell lines that make λ LC (ALMC-1, ALMC-2, EJM, OPM2, MM.1S, and MM.1R) and in 16 AL λ patient specimens. We demonstrated significant decreases in LC mRNA, intracellular LC MFI, and λ LC secretion by cell lines (Blood 2014;123:3220); moreover, transcriptional profiling indicated minimal off-target effects (ibid; Supplement). We now report that in vitro secretion of λ LC by CD138-selected plasma cells from AL patients (n=3, newly diagnosed λ) treated with si[IGLCλCR] was reduced by 65% from a mean of 3.1 to 1.0µg/ml and that the residual λ LC mRNA was 49% of control. Similarly we treated κ LC secreting human myeloma cell lines with si[IGLCκCR] and si[-] (IM9, H929, JJN-3, and ARH77). By qPCR the residual κ LC mRNA was 13%, by flow cytometry the MFI was reduced by a median of 67.3% (22.5-90.8), and by ELISA mean κ LC secretion was reduced from 3.7 to 0.8µg/ml (P = 0.055, paired t test). We treated CD138-selected κ patient samples (AL 3, LCDD 1, MM 6) in the same way. By qPCR the residual κ LC mRNA was 57% control, by flow cytometry the MFI was reduced by a median of 37.5% (14-69.8), and by ELISA secretion was reduced from 9.4 to 6.5µg/ml (P = 0.02, paired t test). In the murine dual-flank xenograft model employing λ secreting cells, by qPCR there was a reduction in λ LC mRNA with si[IGLCλCR] treatment in 13 of 16 mice (ALMC-1 11/114, ALMC-2 2/2). In these 14, the median λ LC expression was 66% of control (range, 17-97). In 6/13 the average reduction in λ LC expression was 59%. Of note, measurable levels of human λ LC were found in the blood of all mice at sacrifice. Conclusion With one pool of siRNA targeting the constant region of the κ or λ LC we can significantly reduce production and secretion of LC by clonal human plasma cells, including patient cells, and also reduce the expression of LC in xenograft plasmacytomas in vivo. Two methods of siRNA delivery have been employed in this work thus far, SLO and in vivo electroporation, neither of which require endosomal escape. The specificity of the siRNA pools for plasma cell LC genes and the possible receptivity of plasma cells to RNAi are important positive aspects of this work. Further pre-clinical development of Ig LC CR RNAi employing lipid-based nanoparticle platforms is warranted in order to optimize cell-specific delivery, delivery efficiency and siRNA targeting. Disclosures No relevant conflicts of interest to declare.


1995 ◽  
Vol 108 (12) ◽  
pp. 3757-3764 ◽  
Author(s):  
S.M. King ◽  
R.S. Patel-King

We describe here the molecular cloning of the M(r) 18,000 dynein light chain from the outer arm of Chlamydomonas flagella. In vivo, this molecule is directly associated with the gamma dynein heavy chain. Sequence analysis indicates that this light chain is a novel member of the calmodulin superfamily of Ca2+ binding regulatory proteins; this molecule is 42, 37 and 36% identical to calmodulin, centrin/caltractin and troponin C, respectively, and also shows significant similarity to myosin light chains. Although four helix-loop-helix elements are evident, only two conform precisely to the EF hand consensus and are therefore predicted to bind Ca2+ in vivo. In vitro Ca2+ binding studies indicate that this dynein light chain (expressed as a C-terminal fusion with maltose binding protein) has at least one functional Ca2+ binding site with an apparent affinity for Ca2+ of approximately 3 × 10(−5) M. Within the Chlamydomonas flagellum, the transition from an assymmetric to a symmetric waveform (which implies an alteration in dynein activity) is mediated by an increase in intraflagellar Ca2+ from 10(−6) to 10(−1) M; this transition is altered in mutants that lack the outer arm. The data presented here suggest that a Ca(2+)-dependent alteration in the interaction of this dynein light chain with the motor containing heavy chain may affect outer arm function during flagellar reversal.


1988 ◽  
Vol 59 (02) ◽  
pp. 151-161 ◽  
Author(s):  
Bernhard Lämmle ◽  
Bruce L Zuraw ◽  
Mary Jo Heeb ◽  
Hans Peter Schwarz ◽  
Mauro Berrettini ◽  
...  

SummaryA method for the quantitative assay of native single chain and kallikrein cleaved two-chain high molecular weight (HMW)-kininogen in plasma is described. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of whole plasma is followed by electrotransfer of the electropherogram to nitrocellulose membranes and detection of the blotted HMW-kininogen with its physiologic ligands, radiolabeled plasma prekallikrein or radiolabeled factor XI. Using unreduced SDS-PAGE cleaved two-chain HMW-kininogen (Mr ∼107,000 and 95,000), is elec-trophoretically separated from uncleaved single chain HMW-kininogen (Mr ∼150,000). Counting the radioactivity of the nitrocellulose pieces corresponding to cleaved HMW-kininogen permits its quantitative measurement by comparison with standards consisting of decreasing amounts of fully dextran sulfate activated normal human plasma. Single chain HMW-kininogen is similarly assayed using reduced SDS-PAGE and unactivated normal human plasma standards.This technique is highly specific and sensitive to about 50 ng of either cleaved or uncleaved HMW-kininogen. Varying amounts of cleaved HMW-kininogen were found in a small series of plasmas from patients suffering from various inflammatory conditions. Higher levels of in vivo cleaved HMW-kininogen were observed during acute attacks of hereditary angioedema due to Cl-inhibitor deficiency. This technique may be useful for the assessment of the degree of in vitro or in vivo activation of the contact system.


Parasitology ◽  
1993 ◽  
Vol 107 (4) ◽  
pp. 351-358 ◽  
Author(s):  
W. S. Hollister ◽  
E. U. Canning ◽  
N. I. Colbourn ◽  
A. Curry ◽  
C. J. N. Lacey

SUMMARYA microsporidium of the genusEncephalitozoonwas isolated into culture from the nasal epithelium of a patient with AIDS. It was compared within vitroisolates ofEncephalitozoon cuniculiand the type isolate ofEncephalitozoon hellemby SDS–PAGE and by Western blotting with murine antisera raised toE. cuniculi, E. hellemand the nasal isolate, monoclonal antibodies raised toE. cuniculiand sequential sera from the patient. All tests showed similarities betweenE. hellemand the nasal isolate but differences between these two isolates andE. cuniculi. Minor protein differences betweenE. hellemand the nasal isolate were not considered sufficient to separate them at the specific level. The new isolate is named the Wainwright isolate ofE. hellem. The ultrastructure of the Wainwright isolatein vitrowas similar to that of the parasitein vivobut there was a greater tendency for disruption of the parasitophorous vacuoles. The deposition of the electrondense surface coat on the sporogonic stages ofE. hellem, as a uniform layer which later thickens, is in contrast to its deposition as broad bands, which later join up, inE. cuniculi. This may be a useful character in distinguishing the species without recourse to analysis of protein profiles.


Sign in / Sign up

Export Citation Format

Share Document