scholarly journals von Willebrand factor and von Willebrand disease [published erratum appears in Blood 1988 Mar;71(3):830]

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 895-904 ◽  
Author(s):  
ZM Ruggeri ◽  
TS Zimmerman

Abstract Progress has occurred in the past several years in the understanding of the structure and function of von Willebrand factor (vWF). This multimeric glycoprotein exhibits a dual role, that of mediating platelet adhesion and aggregation onto thrombogenic surfaces, and that of functioning as carrier in plasma for the factor VIII procoagulant protein. New insights into the nature of the several functional domains of vWF have led to the identification of the regions of the molecule that interact with factor VIII, heparin, the glycoprotein lb of platelets, and collagen. Alterations of vWF are the cause of von Willebrand disease (vWD), a congenital bleeding disorder. In the majority of patients, the plasma levels of vWF are decreased, but there is no demonstrable structural or functional alteration of the protein. In other patients, however, the structure of vWF is abnormal. This review summarizes the current knowledge on vWF and vWD.

Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 895-904 ◽  
Author(s):  
ZM Ruggeri ◽  
TS Zimmerman

Progress has occurred in the past several years in the understanding of the structure and function of von Willebrand factor (vWF). This multimeric glycoprotein exhibits a dual role, that of mediating platelet adhesion and aggregation onto thrombogenic surfaces, and that of functioning as carrier in plasma for the factor VIII procoagulant protein. New insights into the nature of the several functional domains of vWF have led to the identification of the regions of the molecule that interact with factor VIII, heparin, the glycoprotein lb of platelets, and collagen. Alterations of vWF are the cause of von Willebrand disease (vWD), a congenital bleeding disorder. In the majority of patients, the plasma levels of vWF are decreased, but there is no demonstrable structural or functional alteration of the protein. In other patients, however, the structure of vWF is abnormal. This review summarizes the current knowledge on vWF and vWD.


Blood ◽  
2015 ◽  
Vol 125 (13) ◽  
pp. 2019-2028 ◽  
Author(s):  
Peter J. Lenting ◽  
Olivier D. Christophe ◽  
Cécile V. Denis

Abstract To understand the placement of a certain protein in a physiological system and the pathogenesis of related disorders, it is not only of interest to determine its function but also important to describe the sequential steps in its life cycle, from synthesis to secretion and ultimately its clearance. von Willebrand factor (VWF) is a particularly intriguing case in this regard because of its important auxiliary roles (both intra- and extracellular) that implicate a wide range of other proteins: its presence is required for the formation and regulated release of endothelial storage organelles, the Weibel-Palade bodies (WPBs), whereas VWF is also a key determinant in the clearance of coagulation factor VIII. Thus, understanding the molecular and cellular basis of the VWF life cycle will help us gain insight into the pathogenesis of von Willebrand disease, design alternative treatment options to prolong the factor VIII half-life, and delineate the role of VWF and coresidents of the WPBs in the prothrombotic and proinflammatory response of endothelial cells. In this review, an update on our current knowledge on VWF biosynthesis, secretion, and clearance is provided and we will discuss how they can be affected by the presence of protein defects.


1998 ◽  
Vol 79 (03) ◽  
pp. 456-465 ◽  
Author(s):  
André Vlot ◽  
Stefan Koppelman ◽  
Bonno Bouma ◽  
Jan Sixma

IntroducationFactor VIII and von Willebrand factor are plasma glycoproteins whose deficiency or structural defects cause hemophilia A and von Willebrand disease, respectively (1). These diseases are the most common inherited bleeding disorders of man. Factor VIII and vWF are synthesized by different cell types and circulate in plasma as a tightly bound complex. Factor VIII is synthesized in the liver (2), and functions as a cofactor for activated factor IX in the intrinsic activation of factor X on a membrane surface (3). vWF is synthesized in endothelial cells (4, 5) and megakaryocytes (6). vWF has a dual role in hemostasis: it promotes platelet adhesion to subendothelium after vessel injury (7, 8) and it acts as a carrier protein of factor VIII (1).The distinction between factor VIII and vWF was unclear for many years, because severe Von Willebrand disease is associated with factor VIII deficiency and because early preparations of factor VIII concentrates contained vWF and were therefore effective in correcting the platelet adhesion defects in patients with von Willebrand disease (9). Since factor VIII and vWF form a tightly bound non-covalent complex in plasma, both proteins are copurified when isolated from plasma, unless special measures are taken (1). The stoichiometry of factor VIII and vWF in plasma is approximately 1:50 and factor VIII and monomeric vWF have similar molecular weights of approximately 240 kDa. Therefore, vWF represents 98% of the molecular mass of the factor VIII-vWF complex (10) and almost all the antibodies raised against the complex react to vWF. In the 1980’s, factor VIII and vWF have each been purified to homogeneity and the genes for these proteins have been cloned. This set the stage for studies with purified proteins which have elucidated structure-function relationships for both proteins. Also, the interaction between both proteins could be studied using proteolytic fragments, small peptides, and monoclonal antibodies. In the last few years, the construction of recombinant mutants and fragments of both factor VIII (11-13) and vWF (14-16) has proven to be a powerful tool in the elucidation of the structure and function of both proteins.Binding of factor VIII to vWF is essential for the survival of factor VIII in vivo (17, 18). The underlying mechanism is probably that factor VIII bound to vWF is protected from phospholipid dependent proteolysis by activated protein C and factor Xa (19, 20). The binding site for factor VIII has been located at the amino terminus of vWF (21, 22). A tryptic fragment containing this binding site was not sufficient to protect factor VIII against activated protein C-mediated degradation according to some groups (23, 24). In contrast, a recent study using comparable vWF fragments showed protection of factor VIII equivalent to mature vWF (16).In 1989, a new variant of von Willebrand disease was discerned (type Normandy or 2N), distinct from the more than 20 subtypes known, characterized by a mutant vWF that is structurally and functionally normal, except that it does not bind to and stabilize factor VIII (25, 26). Since then, several mutations in the factor VIII binding site on vWF have been found (27). A number of reports have shown that factor VIII binds vWF via a high affinity binding site on its light chain (28-30). Two recent studies suggest that this binding site consists of two separate binding sites (31, 32).This review summarizes current knowledge on the interaction between factor VIII and vWF. Emphasis will be laid on the biological importance of, and the domains involved in binding, and on the stoichiometry and kinetics of complex formation.


2010 ◽  
Vol 30 (03) ◽  
pp. 150-155 ◽  
Author(s):  
J. W. Wang ◽  
J. Eikenboom

SummaryVon Willebrand factor (VWF) is a pivotal haemostatic protein mediating platelet adhesion to injured endothelium and carrying coagulation factor VIII (FVIII) in the circulation to protect it from premature clearance. Apart from the roles in haemostasis, VWF drives the formation of the endothelial cell specific Weibel-Palade bodies (WPBs), which serve as a regulated storage of VWF and other thrombotic and inflammatory factors. Defects in VWF could lead to the bleeding disorder von Willebrand disease (VWD).Extensive studies have shown that several mutations identified in VWD patients cause an intracellular retention of VWF. However, the effects of such mutations on the formation and function of its storage organelle are largely unknown. This review gives an overview on the role of VWF in WPB biogenesis and summarizes the limited data on the WPBs formed by VWD-causing mutant VWF.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-1
Author(s):  
Amber Federizo

Inherited platelet disorders are recognized as an important cause of mild to severe bleeding in both children and adults. Patients with platelet disorders may present with mucocutaneous bleeding, gastrointestinal bleeding, menorrhagia, postsurgical, and/or excessive bleeding from traumatic injury. Delta storage pool deficiencies (delta-SPD) are among the most frequent platelet disorders, characterized by dysfunctional dense platelet granules. Bernard Soulier syndrome (BSS) is an autosomal recessive platelet disorder caused by mutations in various polypeptides in the GpIb/IX/V complex, which is the principal receptor for von Willebrand factor (VWF). Treatment of platelet disorders is mainly supportive. Normal hemostasis requires VWF and factor VIII (FVIII) to support platelet adhesion and aggregation at sites of vascular injury. von Willebrand factor is a large multimeric glycoprotein present in human plasma as a series of polymers called multimers. Molecular weights for multimers ranges from 500 kDa for the dimer to over 10,000 kDa for the high molecular weight multimers (HMWM) forming the largest known protein present in human plasma. Each multimeric subunit of VWF has binding sites for the receptor GpIb on nonactivated platelets and the receptor GpIIb/IIIa to facilitate platelet adhesion and platelet aggregation, respectively, making the VWF HMWM important for normal platelet function. Desmopressin (DDAVP), which is known to stimulate the release of VWF and FVIII, is commonly used for treatment of platelet disorders. Potentiation of platelet aggregation at high shear rate may be one mechanism by which DDAVP shortens the prolonged bleeding time of patients with congenital platelet defects. For severe bleeding, platelet transfusion may be required, but patients may develop isoantibodies, rendering this therapy ineffective. For this reason, it may be prudent to reserve platelet transfusion in this patient population for emergent situations, such as trauma. Other patients and/or clinical situations may require recombinant active factor VII (rFVIIa), but this therapy is very costly and not always effective and/or available. Antifibrinolytics may also be used but are not always effective. In four (4) patients with platelet disorders (delta-SPD [n=3]; BSS [n=1]), common supportive therapies were not effective, tolerable, and/or available. It was postulated that off-label infusions of a cost-effective von Willebrand factor/coagulation factor VIII (VWF/FVIII) complex (Wilate, Octapharma SA) might be of benefit in these refractory patients (Table 1). The mechanism of action of DDAVP treatment efficacy relies on the release of existing, stored, functional VWF. In refractory patients with suboptimal VWF functionality, it was reasoned that infusion of exogenous, functional VWF and FVIII could potentially encourage platelet adhesion and aggregation. All refractory patients studied were treated successfully with the VWF/FVIII complex with positive clinical outcomes. As mentioned, the adhesive activity of VWF depends on the size of its multimers, and HMWM are the most effective in supporting interaction with collagen and platelet receptors and in facilitating wound healing under conditions of shear stress in the human vascular system. The VWF/FVIII complex utilized in these patients is known to have minimal amounts of the plasma metalloproteinase ADAMTS13. The HMWM of VWF are, under normal conditions, cleaved by ADAMTS13 to smaller, less adhesive multimers. During the manufacturing process, if the ADAMTS13 is not filtered out of the product almost entirely, the VWF in the vial may become highly proteolyzed. Therefore, a reduction or lack of HMWM resulting from inclusion of ADAMTS13 in the manufactured product is believed to reduce product functionality. Multimeric analysis of the VWF/FVIII complex has shown that it exhibits a physiological triplet structure which resembles normal plasma. In addition, the product has a high safety profile and tolerability as protein impurities are eliminated in the manufacturing process. In summary, the use of a VWF/FVIII complex in four (4) patients with inherited platelet disorders, who were refractory to conventional treatments, provided beneficial, cost-effective clinical outcomes with resolution of bleeding. Disclosures Federizo: Octapharma: Consultancy, Honoraria, Other: Publication support, Speakers Bureau; Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau; American Thrombosis and Hemostasis Netowrk: Research Funding; Aptevo: Consultancy, Speakers Bureau; National Hemophilia Foundation: Consultancy, Honoraria. OffLabel Disclosure: von Willebrand/FVIII concentrate is currently approved for the treatment of Hemophilia A and von Willebrand. This abstract will review the off-label use of this medication in the treatment of inherited platelet dysfunction.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 823-831 ◽  
Author(s):  
VT Turitto ◽  
HJ Weiss ◽  
TS Zimmerman ◽  
II Sussman

The present studies were undertaken to determine whether factor VIII/von Willebrand factor (vWF) present in the vessel wall (in addition to that in plasma) may mediate the attachment of platelets to subendothelium. Subendothelium from everted rabbit aorta was exposed to human citrated blood flowing through an annular perfusion chamber at 40 mL/min (wall shear rate of 2,600 s-1 for five minutes). The vessel segments were incubated at 37 degrees C for one hour with various dilutions of either goat-anti-rabbit factor VIII/vWF serum or an IgG fraction prepared from the serum. Control segments were incubated with serum or IgG from a nonimmunized goat. Values of platelet contact (C), platelet adhesion (C + S), and thrombus formation (T) on the subendothelium were evaluated by a morphometric technique. Compared with vessels incubated with fractions prepared from a normal goat, a significant decrease in platelet adhesion (C + S), ranging from 45% to 65%, was observed on vessels incubated with various dilutions (1:5 to 1:50) of either serum or IgG fractions of goat-anti-rabbit factor VIII/vWF. A similar decrease in platelet adhesion was observed with vessels incubated with an F(ab')2 fragment against rabbit factor VIII/vWF prepared in the goat. When goat-anti-rabbit factor VIII/vWF IgG was added to rabbit blood (1:75 dilution), platelet adhesion was reduced to the same extent (65%) on normal rabbit vessels and on vessels pre-incubated with goat-anti-rabbit factor VIII/vWF. Immunofluorescence studies revealed the presence of rabbit factor VIII/vWF in the subendothelium of rabbit aorta and the continued binding of the goat-anti-factor VIII/vWF antibodies on subendothelium during the perfusion studies. No uptake of human factor VIII/vWF on the rabbit subendothelium was observed by this immunologic technique; human factor VIII/vWF was found to be entirely associated with the attached human platelets. Thus, factor VIII/vWF in the vessel wall may mediate platelet attachment to subendothelium in a manner similar to that of plasma factor VIII/vWF.


2018 ◽  
Vol 475 (17) ◽  
pp. 2819-2830 ◽  
Author(s):  
Małgorzata A. Przeradzka ◽  
Henriet Meems ◽  
Carmen van der Zwaan ◽  
Eduard H.T.M. Ebberink ◽  
Maartje van den Biggelaar ◽  
...  

The D′–D3 fragment of von Willebrand factor (VWF) can be divided into TIL′-E′-VWD3-C8_3-TIL3-E3 subdomains of which TIL′-E′-VWD3 comprises the main factor VIII (FVIII)-binding region. Yet, von Willebrand disease (VWD) Type 2 Normandy (2N) mutations, associated with impaired FVIII interaction, have been identified in C8_3-TIL3-E3. We now assessed the role of the VWF (sub)domains for FVIII binding using isolated D′, D3 and monomeric C-terminal subdomain truncation variants of D′–D3. Competitive binding assays and surface plasmon resonance analysis revealed that D′ requires the presence of D3 for effective interaction with FVIII. The isolated D3 domain, however, did not show any FVIII binding. Results indicated that the E3 subdomain is dispensable for FVIII binding. Subsequent deletion of the other subdomains from D3 resulted in a progressive decrease in FVIII-binding affinity. Chemical footprinting mass spectrometry suggested increased conformational changes at the N-terminal side of D3 upon subsequent subdomain deletions at the C-terminal side of the D3. A D′–D3 variant with a VWD type 2N mutation in VWD3 (D879N) or C8_3 (C1060R) also revealed conformational changes in D3, which were proportional to a decrease in FVIII-binding affinity. A D′–D3 variant with a putative VWD type 2N mutation in the E3 subdomain (C1225G) showed, however, normal binding. This implies that the designation VWD type 2N is incorrect for this variant. Results together imply that a structurally intact D3 in D′–D3 is indispensable for effective interaction between D′ and FVIII explaining why specific mutations in D3 can impair FVIII binding.


Author(s):  
И.В. Куртов ◽  
Е.С. Фатенкова ◽  
Н.А. Юдина ◽  
А.М. Осадчук ◽  
И.Л. Давыдкин

Болезнь Виллебранда (БВ) может представлять определенные трудности у рожениц с данной патологией. Приведены 2 клинических примера использования у женщин с БВ фактора VIII свертывания крови с фактором Виллебранда, показана эффективность и безопасность их применения. У одной пациентки было также показано использование фактора свертывания крови VIII с фактором Виллебранда во время экстракорпорального оплодотворения. Von Willebrand disease presents a certain hemostatic problem among parturients. This article shows the effectiveness and safety of using coagulation factor VIII with von Willebrand factor for the prevention of bleeding in childbirth in 2 patients with type 3 von Willebrand disease. In one patient, the use of coagulation factor VIII with von Willebrand factor during in vitro fertilization was also shown.


Blood ◽  
1979 ◽  
Vol 54 (3) ◽  
pp. 600-606 ◽  
Author(s):  
D Meyer ◽  
D Frommel ◽  
MJ Larrieu ◽  
TS Zimmerman

Abstract A previously healthy elderly man with mucocutaneous bleeding was found to have a benign monoclonal IgG gammapathy associated with criteria for severe von Willebrand disease (Factor VIII procoagulant activity, Factor-VIII-related antigen, and ristocetin cofactor activity, less than 10% of normal). Associated qualitative abnormalities of factor VIII/von Willebrand factor were demonstrated by radiocrossed immunoelectrophoresis and immunoradiometric assay. The late clinical onset and negative family history are in favor of an acquired form of vWD. The monoclonal gammapathy and abnormalities of factor VIII/von Willebrand factor have been stable over a 10-yr period. No inhibitor to Factor VIII procoagulant activity, ristocetin cofactor activity, or Factor-VIII-related antigen could be demonstrated. Following transfusion of cryoprecipitate (with a normal cross immunoelectrophoretic pattern), there was a rapid removal of the large forms of Factor.-VIII-related antigen, paralleled by a decay of ristocetin cofactor activity. The transfusion study of this patient with acquired von Willebrand disease type II (variant of von Willebrand disease) serves to emphasize the relationship between polydispersity of Factor VIII/von Willebrand Factor and functional heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document