scholarly journals B-lineage colonies from normal, human bone marrow are initiated by B cells and their progenitors

Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 961-970 ◽  
Author(s):  
K McGinnes ◽  
M Letarte ◽  
CJ Paige

We have recently described a reproducible method whereby colonies containing cells that secrete immunoglobulin (Ig) can be grown from normal, human, adult bone marrow samples. The present report characterizes the cells that initiate these colonies. It is shown that all clonogenic cells express the CD19 surface antigen, as removal of these cells before plating in the B-cell colony assay abolished the subsequent growth of plaque-forming, B-lineage colonies. Cells from both the CD10+ and CD20+ B-lineage subpopulations initiated the growth of B-cell colonies, as removal of either subset resulted in a 50% reduction in the number of resulting B-cell colonies. The removal of activated B cells (CD23+), plasma cells (PCA-1+), or myeloid cells (CD13+) did not lead to a significant depletion in B-cell colony formation. Pre-B cells that were not yet committed to Ig light chain expression were also able to differentiate and proliferate into Ig- secreting colonies under the culture conditions used. Colonies initiated by these light chain uncommitted cells were distinguished using a replicate protein immunoblotting technique, which detects the simultaneous secretion of Ig kappa and Ig lambda from single colonies. These experiments provide evidence that the CD10 antigen is expressed on B-lineage cells before Ig light chain commitment, whereas CD20 is not. In conclusion, this B-cell colony assay provides a system for studying the differentiation of bone marrow-derived B cells and their precursors into Ig-secreting cells.

Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 961-970 ◽  
Author(s):  
K McGinnes ◽  
M Letarte ◽  
CJ Paige

Abstract We have recently described a reproducible method whereby colonies containing cells that secrete immunoglobulin (Ig) can be grown from normal, human, adult bone marrow samples. The present report characterizes the cells that initiate these colonies. It is shown that all clonogenic cells express the CD19 surface antigen, as removal of these cells before plating in the B-cell colony assay abolished the subsequent growth of plaque-forming, B-lineage colonies. Cells from both the CD10+ and CD20+ B-lineage subpopulations initiated the growth of B-cell colonies, as removal of either subset resulted in a 50% reduction in the number of resulting B-cell colonies. The removal of activated B cells (CD23+), plasma cells (PCA-1+), or myeloid cells (CD13+) did not lead to a significant depletion in B-cell colony formation. Pre-B cells that were not yet committed to Ig light chain expression were also able to differentiate and proliferate into Ig- secreting colonies under the culture conditions used. Colonies initiated by these light chain uncommitted cells were distinguished using a replicate protein immunoblotting technique, which detects the simultaneous secretion of Ig kappa and Ig lambda from single colonies. These experiments provide evidence that the CD10 antigen is expressed on B-lineage cells before Ig light chain commitment, whereas CD20 is not. In conclusion, this B-cell colony assay provides a system for studying the differentiation of bone marrow-derived B cells and their precursors into Ig-secreting cells.


Cell ◽  
1994 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Hajime Karasuyama ◽  
Antonius Rolink ◽  
Yoichi Shinkal ◽  
Faith Young ◽  
Frederick W. Alt ◽  
...  

1990 ◽  
Vol 10 (7) ◽  
pp. 3562-3568
Author(s):  
M Principato ◽  
J L Cleveland ◽  
U R Rapp ◽  
K L Holmes ◽  
J H Pierce ◽  
...  

Murine bone marrow cells infected with replication-defective retroviruses containing v-raf alone or v-myc alone yielded transformed pre-B cell lines, while a retroviral construct containing both v-raf and v-myc oncogenes produced clonally related populations of mature B cells and mature macrophages. The genealogy of these transformants demonstrates that mature myeloid cells were derived from cells with apparent B-lineage commitment and functional immunoglobulin rearrangements. This system should facilitate studies of developmental relationships in hematopoietic differentiation and analysis of lineage determination.


1998 ◽  
Vol 187 (8) ◽  
pp. 1169-1178 ◽  
Author(s):  
Christophe Arpin ◽  
Odette de Bouteiller ◽  
Diane Razanajaona ◽  
Isabelle Fugier-Vivier ◽  
Francine Brière ◽  
...  

Human myeloma are incurable hematologic cancers of immunoglobulin-secreting plasma cells in bone marrow. Although malignant plasma cells can be almost eradicated from the patient's bone marrow by chemotherapy, drug-resistant myeloma precursor cells persist in an apparently cryptic compartment. Controversy exists as to whether myeloma precursor cells are hematopoietic stem cells, pre–B cells, germinal center (GC) B cells, circulating memory cells, or plasma blasts. This situation reflects what has been a general problem in cancer research for years: how to compare a tumor with its normal counterpart. Although several studies have demonstrated somatically mutated immunoglobulin variable region genes in multiple myeloma, it is unclear if myeloma cells are derived from GCs or post-GC memory B cells. Immunoglobulin (Ig)D-secreting myeloma have two unique immunoglobulin features, including a biased λ light chain expression and a Cμ–Cδ isotype switch. Using surface markers, we have previously isolated a population of surface IgM−IgD+CD38+ GC B cells that carry the most impressive somatic mutation in their IgV genes. Here we show that this population of GC B cells displays the two molecular features of IgD-secreting myeloma cells: a biased λ light chain expression and a Cμ–Cδ isotype switch. The demonstration of these peculiar GC B cells to differentiate into IgD-secreting plasma cells but not memory B cells both in vivo and in vitro suggests that IgD-secreting plasma and myeloma cells are derived from GCs.


Blood ◽  
1990 ◽  
Vol 76 (5) ◽  
pp. 896-905 ◽  
Author(s):  
K McGinnes ◽  
E Keystone ◽  
E Bogoch ◽  
D Hastings ◽  
HA Messner ◽  
...  

Abstract A reproducible method for growing normal human bone marrow B-lineage colonies in agar is described. The clonogenic cells require a rich medium, Opti-MEM (GIBCO/BRL, Burlington, Ontario, Canada), and a source of T-cell-derived factors for growth. The conditions described appear to be limiting for the colony progenitor, suggesting assay clonality. Three novel methods that permit routine and rapid detection of these human B-cell colonies are also described. Colonies containing cells that secrete immunoglobulin are detected by plaquing and protein immunoblotting, while RNA transcripts can be detected by RNA colony blotting. The detection of more than one secreted immunoglobulin isotype or RNA species in a single colony can also be achieved. This B- cell colony assay and the associated detection methods will allow the further delineation of human B lymphopoiesis in both normal and disease states.


1989 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
R D Sanderson ◽  
P Lalor ◽  
M Bernfield

Lymphopoietic cells require interactions with bone marrow stroma for normal maturation and show changes in adhesion to matrix during their differentiation. Syndecan, a heparan sulfate-rich integral membrane proteoglycan, functions as a matrix receptor by binding cells to interstitial collagens, fibronectin, and thrombospondin. Therefore, we asked whether syndecan was present on the surface of lymphopoietic cells. In bone marrow, we find syndecan only on precursor B cells. Expression changes with pre-B cell maturation in the marrow and with B-lymphocyte differentiation to plasma cells in interstitial matrices. Syndecan on B cell precursors is more heterogeneous and slightly larger than on plasma cells. Syndecan 1) is lost immediately before maturation and release of B lymphocytes into the circulation, 2) is absent on circulating and peripheral B lymphocytes, and 3) is reexpressed upon their differentiation into immobilized plasma cells. Thus, syndecan is expressed only when and where B lymphocytes associate with extracellular matrix. These results indicate that B cells differentiating in vivo alter their matrix receptor expression and suggest a role for syndecan in B cell stage-specific adhesion.


2005 ◽  
Vol 201 (6) ◽  
pp. 993-1005 ◽  
Author(s):  
Dominique Gatto ◽  
Thomas Pfister ◽  
Andrea Jegerlehner ◽  
Stephen W. Martin ◽  
Manfred Kopf ◽  
...  

Humoral immune responses are thought to be enhanced by complement-mediated recruitment of the CD21–CD19–CD81 coreceptor complex into the B cell antigen receptor (BCR) complex, which lowers the threshold of B cell activation and increases the survival and proliferative capacity of responding B cells. To investigate the role of the CD21–CD35 complement receptors in the generation of B cell memory, we analyzed the response against viral particles derived from the bacteriophage Qβ in mice deficient in CD21–CD35 (Cr2−/−). Despite highly efficient induction of early antibody responses and germinal center (GC) reactions to immunization with Qβ, Cr2−/− mice exhibited impaired antibody persistence paralleled by a strongly reduced development of bone marrow plasma cells. Surprisingly, antigen-specific memory B cells were essentially normal in these mice. In the absence of CD21-mediated costimulation, Qβ-specific post-GC B cells failed to induce the transcriptional regulators Blimp-1 and XBP-1 driving plasma cell differentiation, and the antiapoptotic protein Bcl-2, which resulted in failure to generate the precursor population of long-lived plasma cells residing in the bone marrow. These results suggest that complement receptors maintain antibody responses by delivery of differentiation and survival signals to precursors of bone marrow plasma cells.


Blood ◽  
1996 ◽  
Vol 87 (8) ◽  
pp. 3375-3383 ◽  
Author(s):  
T Tsujimoto ◽  
IA Lisukov ◽  
N Huang ◽  
MS Mahmoud ◽  
MM Kawano

By using two-color phenotypic analysis with fluorescein isothiocyanate- anti-CD38 and phycoerythrin-anti-CD19 antibodies, we found that pre-B cells (CD38+CD19+) signifcantly decreased depending on the number of plasma cells (CD38++CD19+) in the bone marrow (BM) in the cases with BM plasmacytosis, such as myelomas and even polyclonal gammopathy. To clarify how plasma cells suppress survival of pre-B cells, we examined the effect of plasma cells on the survival of pre-B cells with or without BM-derived stromal cells in vitro. Pre-B cells alone rapidly entered apoptosis, but interleukin-7 (IL-7), a BM stromal cell line (KM- 102), or culture supernatants of KM-102 cells could support pre-B cell survival. On the other hand, inhibitory factors such as transforming growth factor-beta1 (TGF-beta1) and macrophage inflammatory protein- 1beta (MIP-1beta) could suppress survival of pre-B cells even in the presence of IL-7. Plasma cells alone could not suppress survival of pre- B cells in the presence of IL-7, but coculture of plasma cells with KM- 102 cells or primary BM stromal cells induced apoptosis of pre-B cells. Supernatants of coculture with KM-102 and myeloma cell lines (KMS-5) also could suppress survival of pre-B cells. Furthermore, we examined the expression of IL-7, TGF-beta1, and MIP-1beta mRNA in KM-102 cells and primary stromal cells cocultured with myeloma cell lines (KMS-5). In these cells, IL-7 mRNA was downregulated, but the expression of TGF- beta1 and MIP-1beta mRNA was augmented. Therefore, these results suggest that BM-derived stromal cells attached to plasma (myeloma) cells were modulated to secrete lesser levels of supporting factor (IL- 7) and higher levels of inhibitory factors (TGF-beta1 and MIP-1beta) for pre-B cell survival, which could explain why the increased number of plasma (myeloma) cells induced suppression of pre-B cells in the BM. This phenomenon may represent a feedback loop between pre-B cells and plasma cells via BM stromal cells in the BM.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3613-3622 ◽  
Author(s):  
Hans-Christian Aasheim ◽  
Leon W.M.M. Terstappen ◽  
Ton Logtenberg

Abstract Members of the large Eph family of receptor tyrosine kinases (RTKs) display temporally and spatially restricted expression patterns during embryogenesis, suggesting a role in various developmental processes. We have begun to investigate the expression of members of this receptor family during human hematopoiesis, in particular B lymphopoiesis. Expression of Eph RTKs in cells of the B-lymphoid lineage was assessed by using degenerate oligonucleotide primers based on stretches of conserved nucleic acid sequences in members of the Eph family. First, the content of Eph-family RTKs was assessed in freshly sorted fetal bone marrow pro–B cells. This population was found to harbor transcripts of the Hek8 and Hek11 members of this gene family. Subsequent analysis of expression of these genes in B cells representing various differentiation and ontogenic stages showed that the Hek8 transcript is constitutively present in all fetal and adult B-lineage cells, with high levels of expression in peripheral blood B cells. In contrast, the Hek11 transcript was exclusively found in fetal bone marrow pro–B cells and pre–B cells, but not in more mature fetal B-lineage cells. All adult B-lineage cells, from early pro–B cells to end-stage plasma cells, lacked Hek11 transcripts. The developmentally regulated expression of Hek11 during fetal B lymphopoiesis suggests a role for this gene in pre/pro–B cell expansion and/or differentiation and defines a difference in progenitor B cell populations isolated from fetal versus adult human bone marrow.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 620-620
Author(s):  
Sherine F. Elsawa ◽  
Anne J Novak ◽  
Deanna Grote ◽  
Thomas E Witzig ◽  
Stephen M. Ansell

Abstract MicroRNAs (miRNAs) are small noncoding RNAs that are approximately 20–22 nucleotides with critical functions in cell growth, survival, and differentiation. These conserved sequences can regulate expression of multiple genes and are often tissue specific and dysregulated in malignancies. Thus, miRNA profiling has been used to create signatures for many solid tumors. These profiles have been used to classify tumors and to help predict survival and outcome. In the present study, we utilized the DiscovArray miRNA profiling service (Asuragen Services, Austin, TX) which utilizes a custom-manufactured Affymetrix GeneChip® from Ambion that covers miRNAs derived from the Sanger miRBase (http://microrna.sanger.ac.uk/sequences/index.shtml) and over 11,000 predicted miRNAs derived from published reports. The signal processing implemented was a multi-step process involving probe-specific signal detection calls, background estimation and correction, constant variance stabilization and global normalization. For each probe, an estimated background value was subtracted derived from the median signal of a set of G-C-matched anti-genomic controls. Arrays within a specific experiment were normalized together according to variance stabilization method. Detection calls were based on a Wilcoxon rank-sum test of the miRNA probe signal compared to the distribution of signals from GC-content matched anti-genomic probes. For statistical hypothesis testing, a two-sample t-test, with assumption of equal variance, was applied. One-way ANOVA was used for multiple group comparison. Probes were considered to be differentially expressed based on two criteria: a p-value of < 0.001 and glog2 difference > 1. miRNA expression was analyzed in all malignant B lineage cells (CD19+ CD138+) (n=8), malignant B cells alone (CD19+) (n=6) and plasma cells alone (CD138+) (n=3) from Waldenström macroglobulinemia (WM) patients. The expression was compared to malignant CD19+ B cells from chronic lymphocytic leukemia (CLL) patients (n=5), malignant plasma cells (CD138+) from multiple myeloma (MM) patients (n=5) and to B lineage cells (CD19+ CD138+) (n=4), CD19+ B-lymphocytes (n=3) and CD138+ plasma cells (n=6) from healthy donors. Data analysis based on a total of approximately 11,000 miRNAs analyzed shows that CD19+ CD138+ cells (double sorting) from WM patients did not cluster as a unique group. Some samples had a pattern similar to CLL, some similar to MM and others similar to CD19+ CD138+ cells from healthy controls. This lack of clear signature was observed by others in gene expression profiling and CGH arrays. We therefore hypothesized this lack of clustering was due to the lymphoplasmacytic nature of WM cells and therefore we analyzed B cells (CD19+) and plasma cells (CD138+) separately. miRNA expression in B cells (CD19+) identifies a signature in normal B cells that is absent in both WM B cells (CD19+) and CLL cells. There is also a set of miRNAs that are absent in normal B cells that are expressed in WM B cells and CLL. In addition, WM B cells had a unique miRNA signature that is unique compared to CLL and normal B cells. An additional set of miRNAs were expressed and clustered only in CLL patients. Similar to B cells, plasma cell (CD138+) analysis in WM, MM and healthy donors shows a clustering pattern that identifies normal plasma cells from MM plasma cells. WM plasma cells had a miRNA signature that is unique only to WM patients, however, a subset of miRNAs shared an expression pattern with MM plasma cells. While miRNAs can target multiple genes, some of the genes that are targets of the miRNAs identified in this analysis include XBP-1, Blimp-1, IRF-4, Bcl-6 and TACI. These target genes are known to be important in B cell and plasma cell development. In summary, we have analyzed miRNA expression in malignant B cells (CD19+) and malignant plasma cells (CD138+) from WM patients and compared their expression pattern to their normal counterpart as well as malignant counterpart in CLL B cells and MM plasma cells. Our analysis shows that WM B cells have a miRNA signature unique to WM only and one that is shared by CLL cells. Similarly, WM plasma cells have a unique miRNA signature but also has some miRNAs that are shared by malignant plasma cells in MM. These miRNAs target genes involved in B cell differentiation. Analysis of the functional roles of these miRNAs will and their regulation will further our understanding of the regulation of B cells development in normal and malignant conditions.


Sign in / Sign up

Export Citation Format

Share Document