scholarly journals Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1

2005 ◽  
Vol 201 (6) ◽  
pp. 993-1005 ◽  
Author(s):  
Dominique Gatto ◽  
Thomas Pfister ◽  
Andrea Jegerlehner ◽  
Stephen W. Martin ◽  
Manfred Kopf ◽  
...  

Humoral immune responses are thought to be enhanced by complement-mediated recruitment of the CD21–CD19–CD81 coreceptor complex into the B cell antigen receptor (BCR) complex, which lowers the threshold of B cell activation and increases the survival and proliferative capacity of responding B cells. To investigate the role of the CD21–CD35 complement receptors in the generation of B cell memory, we analyzed the response against viral particles derived from the bacteriophage Qβ in mice deficient in CD21–CD35 (Cr2−/−). Despite highly efficient induction of early antibody responses and germinal center (GC) reactions to immunization with Qβ, Cr2−/− mice exhibited impaired antibody persistence paralleled by a strongly reduced development of bone marrow plasma cells. Surprisingly, antigen-specific memory B cells were essentially normal in these mice. In the absence of CD21-mediated costimulation, Qβ-specific post-GC B cells failed to induce the transcriptional regulators Blimp-1 and XBP-1 driving plasma cell differentiation, and the antiapoptotic protein Bcl-2, which resulted in failure to generate the precursor population of long-lived plasma cells residing in the bone marrow. These results suggest that complement receptors maintain antibody responses by delivery of differentiation and survival signals to precursors of bone marrow plasma cells.

2013 ◽  
Vol 220 (3) ◽  
pp. 305-317 ◽  
Author(s):  
Flavia Fonseca Bloise ◽  
Felipe Leite de Oliveira ◽  
Alberto Félix Nobrega ◽  
Rita Vasconcellos ◽  
Aline Cordeiro ◽  
...  

The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3′-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19+B-cells. T3administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220+cells correlating with an increased percentage of CD138+plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detectedex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3stimulate plasmacytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.


1996 ◽  
Vol 183 (5) ◽  
pp. 2303-2312 ◽  
Author(s):  
K M Toellner ◽  
A Gulbranson-Judge ◽  
D R Taylor ◽  
D M Sze ◽  
I C MacLennan

Immunoglobulin (Ig) class switch recombination is associated with the production and splicing of germline IgCH messenger RNA transcripts. Levels of gamma 1 transcripts in mouse spleen sections were assessed by semiquantitative analysis of reverse transcriptase polymerase chain reaction (PCR) products during primary and secondary antibody responses to chicken gamma globulin (CGG). This was correlated with the appearance of CGG-specific B cells and their growth and differentiation to plasma cells. After primary immunization with CGG, gamma 1 switch transcripts appeared after 4 d, peaked at a median of six times starting levels between 10 and 18 d after immunization, and returned to background levels before secondary immunization at 5 wk. By contrast, after secondary challenge with CGG, a sevenfold increase in transcripts occurs during the first d. The level again doubles by day 3, when it is six times that which is seen at the peak of the primary response. After day 4, there was a gradual decline over the next 2-3 wk. Within 12 h of secondary immunization, antigen-specific memory B cells appeared in the outer I zone and by 24 h entered S phase, presumably as a result of cognate interaction with primed T cells. Over the next few hours, they migrated to the edge of the red pulp, where they grew exponentially until the fourth day, when they synchronously differentiated to become plasma cells. The same pattern was seen for the migration, growth, and differentiation of virgin hapten-specific B cells when CGG-primed mice were challenged with hapten protein. The continued production of transcripts after day 3 indicates that switching also occurs in germinal centers, but in a relatively small proportion of their B cells. The impressive early production of switch transcripts during T cell-dependent antibody responses occurs in cells that are about to undergo massive clonal expansion. It is argued that Ig class switching at this time, which is associated with cognate T cell-B cell interaction in the T zone, has a major impact on the class and subclasses of Ig produced during the response.


2021 ◽  
Author(s):  
Ashley N. Barlev ◽  
Susan Malkiel ◽  
Annemarie L. Dorjée ◽  
Jolien Suurmond ◽  
Betty Diamond

AbstractFcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcγRIIB expression on B cell activation and plasma cell differentiation.Loss of FcγRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) and IgG3+ B cells had the highest expression of FcγRIIB and the increase in serum IgG3 was linked to increased MZ B cell signaling and activation in the absence of FcγRIIB. Likewise, human circulating MZ-like B cells had the highest expression of FcγRIIB, and their activation was most strongly inhibited by engaging FcγRIIB. Finally, marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses with both T-dependent and T-independent antigens in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice.Thus, we present a model where high FcγRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.Graphical abstract


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4883-4883
Author(s):  
A. C. Rawstron ◽  
G. Laycock-Brown ◽  
F. E. Davies ◽  
R. G. Owen ◽  
P. Hillmen ◽  
...  

Abstract Alemtuzumab is a highly effective monoclonal antibody therapy for some B-cell disorders, and has been suggested as a possible therapeutic agent for treatment of myeloma. Monoclonal antibody therapeutic efficacy is closely associated with the expression level of the therapeutic target, as demonstrated by the lack of efficacy of single-agent rituximab in CLL. However, there are conflicting reports about the expression levels of CD52, the target for alemtuzumab, in plasma cell disorders. The aim of this study is to assess a large series of cases of plasma cell and B-cell disorders, utilising a standard approach to allow comparison of the target molecule. Plasma cells were assessed from patients with myeloma at presentation or relapse (n=106), monoclonal gammopathy of undetermined significance (MGUS, n=34), and from normal controls (n=19). In addition, B-cells were assessed from patients with chronic lymphocytic leukaemia (CLL, n=87), diffuse large B-cell lymphoma (DLBCL, n=10), follicular lymphoma (FCL, n=9), Waldenstroms macroglobulinaemia (WM, n=20), and also from normal bone marrow (n=37). Normal and neoplastic B-cells showed expression of CD52 (>20% of cells above the CD3-control levels) in all patients except for 1/10 DLBL. B-CLL and WM are known to show responses to single-agent alemtuzumab therapy, and these two disorders had the highest levels of expression. In contrast, B-progenitor cells in normal bone marrow are unaffected by alemtuzumab, and proliferate during alemtuzumab treatment in CLL patients. The levels of CD52 expression by normal B-progenitors were 3-fold lower than CLL/WM. In DLBL and FCL, the B-cells showed very similar levels of CD52 expression to normal B-progenitors, on average 2.8-fold lower than CLL. All plasma cells, whether neoplastic (CD19− or CD19+56+) or normal (CD19+56−), showed much lower levels of expression than normal and neoplastic B-cells. Plasma cell CD52 expression was detectable in 68% of normal controls (13/19), 50% of MGUS patients (17/34), and only 43% of myeloma patients (46/106). Expression was uni-modal in all cases. There was significantly lower expression of CD52 by myeloma plasma cells than by their normal counterparts (median 2.4-fold decrease, P=0.03). Neoplastic plasma cell CD52 expression showed a high degree of inter-patient variation, but fewer than 10% of myeloma patients (7/106) had CD52 expression at a similar level to CLL cells. Neoplastic plasma cell CD52 expression was approximately 6-fold lower than that of normal B-progenitors, and nearly 20-fold lower than that of CLL cells. In summary, CD52 expression is not detectable above control levels in a significant proportion of myeloma patients. In cases with detectable CD52 expression, the antigen is at a much lower level than is present on normal B-progenitors, which actively proliferate during alemtuzumab therapy. The risk of immunosuppression due to depletion of residual normal B/T-cells must also be considered. As alemtuzumab efficacy appears to correlate with CD52 expression levels, myeloma is highly unlikely to respond to alemtuzumab as a single agent except in rare cases. However, alemtuzumab is more likely to be effective in the IgM immunosecretory disorders which show strong CD52 expression.


1993 ◽  
Vol 178 (3) ◽  
pp. 1091-1096 ◽  
Author(s):  
P Corradini ◽  
M Boccadoro ◽  
C Voena ◽  
A Pileri

Multiple myeloma is a B cell malignancy characterized by the expansion of plasma cells producing monoclonal immunoglobulins (Ig). It has been regarded as a tumor arising at the B, pre-B lymphocyte, or even stem cell level. Precursor cells are presumed to proliferate and differentiate giving rise to the plasma cell clonal expansion. Antigenic features and specific Ig gene rearrangement shared by B lymphocytes and myeloma cells have supported this hypothesis. However, the existence of such a precursor is based upon indirect evidence and is still an open question. During differentiation, B cells rearrange variable (V) regions of Ig heavy chain genes, providing a specific marker of clonality. Using an anchor polymerase chain reaction assay, these rearranged regions from five patients with multiple myeloma were cloned and sequenced. The switch of the Ig constant (C) region was used to define the B cell differentiation stage: V regions are linked to C mu genes in pre-B and B lymphocytes (pre-switch B cells), but to C gamma or C alpha in post-switch B lymphocytes and plasma cells (post-switch B cells). Analysis of bone marrow cells at diagnosis revealed the presence of pre-switch B cells bearing plasma cell V regions still joined to the C mu gene. These cells were not identified in peripheral blood, where tumor post-switch B cells were detected. These pre-switch B cells may be regarded as potential myeloma cell precursors.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1922-1930 ◽  
Author(s):  
T Goto ◽  
SJ Kennel ◽  
M Abe ◽  
M Takishita ◽  
M Kosaka ◽  
...  

Abstract A monoclonal antibody (MoAb) that defines a novel terminal B-cell- restricted antigen, termed HM1.24, was developed against a human plasma cell line. The MoAb, designated anti-HM1.24, reacted with five different human myeloma cell lines, as well as with monoclonal neoplastic plasma cells obtained from the bone marrow or peripheral blood of patients with multiple myeloma or Waldenstrom's macroglobulinemia. The HM1.24 antigen was also expressed by mature Ig- secreting B cells (plasma cells and lymphoplasmacytoid cells) but not by other cells contained in the peripheral blood, bone marrow, liver, spleen, kidney, or heart of normal individuals or patients with non- plasma-cell-related malignancies. The anti-HM1.24 MoAb bound to human myeloma RPMI 8226 cells with an affinity constant of 9.2 x 10(8) M-1, indicating approximately 84,000 sites/cell. By immunoprecipitation assay under reducing conditions, this MoAb identified a membrane glycoprotein that had a molecular weight of 29 to 33 kD. Our studies indicate that the HM1.24-related protein represents a specific marker of late-stage B-cell maturation and potentially serves as a target antigen for the immunotherapy of multiple myeloma and related plasma cell dyscrasias.


Blood ◽  
1994 ◽  
Vol 84 (6) ◽  
pp. 1922-1930 ◽  
Author(s):  
T Goto ◽  
SJ Kennel ◽  
M Abe ◽  
M Takishita ◽  
M Kosaka ◽  
...  

A monoclonal antibody (MoAb) that defines a novel terminal B-cell- restricted antigen, termed HM1.24, was developed against a human plasma cell line. The MoAb, designated anti-HM1.24, reacted with five different human myeloma cell lines, as well as with monoclonal neoplastic plasma cells obtained from the bone marrow or peripheral blood of patients with multiple myeloma or Waldenstrom's macroglobulinemia. The HM1.24 antigen was also expressed by mature Ig- secreting B cells (plasma cells and lymphoplasmacytoid cells) but not by other cells contained in the peripheral blood, bone marrow, liver, spleen, kidney, or heart of normal individuals or patients with non- plasma-cell-related malignancies. The anti-HM1.24 MoAb bound to human myeloma RPMI 8226 cells with an affinity constant of 9.2 x 10(8) M-1, indicating approximately 84,000 sites/cell. By immunoprecipitation assay under reducing conditions, this MoAb identified a membrane glycoprotein that had a molecular weight of 29 to 33 kD. Our studies indicate that the HM1.24-related protein represents a specific marker of late-stage B-cell maturation and potentially serves as a target antigen for the immunotherapy of multiple myeloma and related plasma cell dyscrasias.


2021 ◽  
Author(s):  
Darryl Hayward ◽  
Lesley Vanes ◽  
Stefanie Wissmann ◽  
Sujana Sivapatham ◽  
Harald Hartweger ◽  
...  

AbstractMigration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5 and CD40, and using intravital imaging we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion and T cell-dependent activation.SummaryThe WNK1 kinase is essential in B cells for T-dependent antibody responses because it is activated by signaling from BCR, CXCR5 and CD40 and regulates B cell migration, adhesion, T-dependent activation, and differentiation into germinal center B cells and plasma cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1110-1110
Author(s):  
Vijay Bhoj ◽  
Michael C Milone ◽  
Carl H. June ◽  
David Porter ◽  
Stephan A. Grupp ◽  
...  

Abstract Introduction: T cells engineered to express chimeric antigen receptors (CARs) recognizing CD19 (CART19) can eliminate malignant cells in acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). We and other groups have shown that persistent tumor eradication by CD19-specific T cell immunotherapy is accompanied by normal B-cell aplasia. It is assumed that responding patients cannot make new antibody responses post-successful CART19 treatment; however, the status of previously established humoral immunity in these patients is currently unknown. Understanding the consequence of successful CART19 therapy on established humoral immunity has implications for both the clinical management of CART19-treated patients as well as the potential application of this therapy to non-malignant diseases such as autoimmunity and transplantation. Methods: We performed a prospective, observational study of adult and pediatric patients with ALL and adults with relapsed/refractory CLL, who were enrolled in clinical trials of CART19 at our institution. Serum antibody titers to previously-generated vaccine or vaccine-related pathogens (Streptococcus pneumoniae, Tetanus toxoid, Hemophilus influenza type-B (HIB), Measles, Mumps, and Rubella) were determined along with a quantitative assessment of B-cell and plasma cell frequencies in blood and bone marrow aspirates. Specimens were collected during pre-established study assessments or additional time points when collected as required for clinical management. Due to the challenges of assessing plasma cells, multiple methods were employed for their quantification in fresh specimens including flow cytometry and immunohistochemistry (IHC). Flow cytometric assessment of plasma cells was performed on freshly obtained marrow samples. Only patients with at least 3 months of B-cell aplasia in the absence of regular intravenous immunoglobulin (IVIg) infusions were included in the study. Results: All patients had no evidence of leukemia or peripheral B cells post-CART19 infusion at the time of this study. Compared to pre-CART19 serum titers, antibodies to S. pneumoniae remained stable or increased in 9 of 12 patients despite lack of circulating B-cells. Antibody titers to Tetanus toxoid were stable or increased in 13 of 14 patients. Anti-HIB levels were stable or increased in 9 of 11 patients and antibodies to Measles, Mumps and Rubella were stable or increased in 12 of 13, 11 of 13, and 12 of 13 patients, respectively. Flow cytometric analysis of bone marrow aspirates after CART19 infusion revealed three patients with persistence of CD38+ CD138+ plasma cells (at 1, 3 and 9 months post infusion, respectively) despite a complete absence of peripheral CD19+ B cells. In 9 patients, CD20 and CD138 IHC analysis of bone marrow core biopsies revealed a decrease in plasma cell (ranges: 1-5% pre-CART19, 0-<1% post-CART19), consistent with our previously published data. Finally, in another subset of patients, neither B cells nor plasma cells were detectable by flow cytometry of aspirate material or IHC of core biopsies collected either pre- or post-CART19 treatment. Conclusions: The stable or increased titers of antibodies to previous vaccines are surprising and may, in part, reflect improved marrow function as a result of leukemia eradication. The demonstration of plasma cells in a subset of patients in the absence of detectable tumor or normal B cells provides strong evidence for the existence of a population of plasma cells that are resistant to lysis by CART19 cells. This is consistent with antibody titers to previously generated vaccine antigens, which remain stable despite effective CART19 treatment. The additional finding of a decrease in CD138+ cells in several patients by IHC suggests that some populations of plasma cells are either targeted directly by CART19 or have a short half-life (e.g. plasmablasts); CD138 is not sufficient to distinguish these populations. Overall, these results indicate that long-lived plasma cells are resistant to CART19, likely due to a loss of CD19 during plasma cell differentiation. Continued analysis of remaining plasma cells in the absence of ongoing B-cell maturation as a result of CART19 persistence may provide important information on turnover rates of these long-lived cells in humans. Disclosures Bhoj: Novartis: Research Funding. Milone:Novartis: Patents & Royalties, Research Funding. June:Novartis: Research Funding, Royalty income Patents & Royalties. Porter:Novartis: Patents & Royalties, Research Funding. Grupp:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. Lacey:Novartis: Research Funding. Mahnke:Novartis: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 569-569
Author(s):  
Matthieu Mahevas ◽  
Marc Michel ◽  
Benoit Vingert ◽  
Julien Moroch ◽  
David Boutboul ◽  
...  

Abstract Introduction: We recently proposed that B-cell depletion in immune thrombocytopenia (ITP) promotes the generation of long-lived plasma cells in the spleen, some of them being auto-reactive; but it remained possible that this observation was related to ITP itself rather than to B-cell depletion. Primary warm autoimmune hemolytic anemia (wAIHA) is a rare disease characterized by IgG auto-antibodies directed against antigens at the surface of red blood cells (RBCs) antigens, leading to their accelerated destruction. The use of B-cell depletion in wAIHA leads to 60 % to 70% of overall response at one-year and beyond. Nevertheless, 30-40 % of patients may resist to rituximab and then require a splenectomy. Nothing is known about antibody secreting cells (ASC) in the spleen of wAIHA patients, who have previously been treated or not with rituximab. In this study, we analyzed at the single cell level the splenic ASC from patients with chronic and active wAIHA, previously treated or not with rituximab (RTX), and we compared them with splenic ASC from ITP patients, and with splenic and bone marrow plasma cells from healthy donors (HD). Methods: We took advantage of the different therapeutic outcomes to analyze the splenic B-cell compartment of wAIHA patients, not previously treated with RTX (n=6), or after failure RTX treatment (n=3).Splenic tissues from organ donors and bone marrow from cardiovascular thoracotomy were used as controls. Blood samples from wAIHA (n=19), and (HD) (n=8) enrolled in this study were obtained after giving written informed consent in accordance with the Declaration of Helsinki. Results: We observed by flow cytometry and microscopy that the spleen from wAIHA patients who received less than 3 months of steroid therapy was the site of a B-cell response characterized by the presence of Bcl6+ germinal-center (GC) B-cells. Furthemore, splenic ASC secreted anti-red blood cell IgG in vitro. In line with this observation, we observed in the peripheral blood from patients with a newly diagnosed wAIHA (n=11), that short-lived IgG plasmablasts were increased compared with HD (n=8) (Mean 4.2 ± 0.84 % vs 0.99 ± 0.19% of CD19+ cells, p< 0.01). Moreover, for patients receiving long term steroid therapy (> 6 months) the plasmablast response was suppressed in the peripheral blood (Mean: 0.68 ± 0.2 % of CD19+ cells, n=8) and the splenic GC B-cell reaction was impaired (n=3). We conclude that short-lived IgG ASC result from an over-activity of GC reactions in wAIHA. We then analyzed the spleen of 3 patients who failed to respond to RTX, and observed a residual population of CD19+B-cells (median: 0.9% of lymphoid cells), including non-proliferative memory B-cells and plasma cells (PC). A fraction of these residual PC secreted anti-red blood cells IgG in vitro, thus accounting for the faillure of the B-cell depletion therapy. By using a single cell multiplex quantitative RT-PCR (Fluidigm dynamic arrays), we showed that such RTX-resistant plasma cells display a long-lived transcriptional program, which differs from PC from untreated wAIHA patients or HD, as well as from plasmablasts. Interestingly, the gene expression profile of wAIHA long-lived plasma cells segregated with long-lived PC previously observed in the spleen of ITP patients treated with rituximab. By a principal component analysis, we observed a gradient of maturation from plasmablasts to bone marrow plasma cells in which PC from RTX-treated spleens segregated close to bone marrow PC. We also observed that the cytokine BAFF was increased in the supernatants of spleen cell cultures from wAIHA patients treated with rituximab compared with controls (p< 0.05), suggesting, in keeping with our previous report in ITP, a role for BAFF in the differentiation of short-lived plasma cells into long-lived plasma cells. Conclusion: The presence of splenic long-lived autoreactive PC in wAIHA may explain why some patients cannot achieve a response after RTX. Our results show that, the B-cell depletion induced by rituximab itself, as opposed to the underlying auto-immune condition, promotes a suitable environment for the maturation of auto-immune long-lived plasma cells in the spleen. Targeting specifically some factors such as BAFF right after rituximab injection could be an interesting therapeutic option in the future. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document