scholarly journals In vivo priming of platelet-activating factor-induced eosinophil chemotaxis in allergic asthmatic individuals

Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
RA Warringa ◽  
HJ Mengelers ◽  
PH Kuijper ◽  
JA Raaijmakers ◽  
PL Bruijnzeel ◽  
...  

Abstract The cytokines granulocyte-macrophage colony-stimulating factor (GM- CSF), interleukin (IL)-3, and IL-5 are important modulators of eosinophilia and eosinophil function. Eosinophil chemotaxis is known to be particularly sensitive for cytokine priming. In the present study, we compared chemotactic responses of eosinophils derived from peripheral blood of allergic asthmatics to responses of eosinophils from peripheral blood of healthy individuals. Eosinophils from allergic asthmatics exhibited a markedly increased sensitivity in their chemotactic response toward platelet-activating factor (PAF) compared with eosinophils from normal donors. In contrast, C5a-induced eosinophil chemotaxis between both groups was similar. This in vivo- primed phenotype could be mimicked in vitro, by preincubating eosinophils from peripheral blood of healthy individuals with picomolar concentrations of either GM-CSF, IL-3, or IL-5. The chemotactic response of eosinophils derived from the circulation of allergic asthmatic patients toward GM-CSF was significantly lower compared with the response of eosinophils of healthy individuals. Our data strongly suggest that release of cytokines may be an important in vivo priming mechanism for eosinophils in the circulation of allergic asthmatic patients. Such an in vivo priming can subsequently result in selective upregulation and downregulation of chemotactic responses toward various chemoattractants release in the lung tissue.

Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
RA Warringa ◽  
HJ Mengelers ◽  
PH Kuijper ◽  
JA Raaijmakers ◽  
PL Bruijnzeel ◽  
...  

The cytokines granulocyte-macrophage colony-stimulating factor (GM- CSF), interleukin (IL)-3, and IL-5 are important modulators of eosinophilia and eosinophil function. Eosinophil chemotaxis is known to be particularly sensitive for cytokine priming. In the present study, we compared chemotactic responses of eosinophils derived from peripheral blood of allergic asthmatics to responses of eosinophils from peripheral blood of healthy individuals. Eosinophils from allergic asthmatics exhibited a markedly increased sensitivity in their chemotactic response toward platelet-activating factor (PAF) compared with eosinophils from normal donors. In contrast, C5a-induced eosinophil chemotaxis between both groups was similar. This in vivo- primed phenotype could be mimicked in vitro, by preincubating eosinophils from peripheral blood of healthy individuals with picomolar concentrations of either GM-CSF, IL-3, or IL-5. The chemotactic response of eosinophils derived from the circulation of allergic asthmatic patients toward GM-CSF was significantly lower compared with the response of eosinophils of healthy individuals. Our data strongly suggest that release of cytokines may be an important in vivo priming mechanism for eosinophils in the circulation of allergic asthmatic patients. Such an in vivo priming can subsequently result in selective upregulation and downregulation of chemotactic responses toward various chemoattractants release in the lung tissue.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Graziella Bellone ◽  
Paola Astarita ◽  
Elisa Artusio ◽  
Stefania Silvestri ◽  
Katia Mareschi ◽  
...  

Cooperation between in vitro exogenous prolactin (PRL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-3 (IL-3) at an early step of in vitro erythroid differentiation has been shown in a previous study. To gain more insight into the role of PRL in in vivo hematopoiesis, we have now addressed the involvement of endogenous PRL in the growth of hematopoietic progenitors in a bone marrow (BM) stroma environment. The possible modulation of local PRL production by the inflammatory mediator platelet-activating factor (PAF), which is known to be produced by BM cells and to regulate pituitary PRL release, has also been evaluated. Development of burst-forming unit-erythroid (BFU-E) colonies from CD34+ hematopoietic progenitors cultured on a BM stroma cells (BMSC) layer was slightly, but significantly, reduced in the presence of an antihuman PRL antibody. Pretreatment of BMSC with PAF increased the BFU-E colony efficiency of cocultured CD34+ cells, and this effect was completely abrogated by the antiserum. PAF-modulated release of PRL by BMSC was confirmed by an enzyme-linked-immunospot (Elispot) technique. In addition, immunoprecipitation and Western blotting experiments showed two immunoreactive products in the BMSC culture medium. These corresponded to the nonglycosylated (23 kD) and glycosylated (25.5 kD) forms of pituitary PRL that are also expressed by the B-lymphoblastoid cell line IM9-P3. Specific increase of the nonglycosylated form and decrease of the glycosylated form was observed after PAF treatment. Polymerase chain reaction (PCR) amplification of reverse transcribed RNA using PRL-specific primers showed the presence of PRL message in BMSC and IM9-P3 cells. In situ hybridization experiments with a rat PRL cDNA probe cross-reacting with human PRL mRNA confirmed its presence in a small fraction of unstimulated BMSC and in the majority of PAF-stimulated BMSC. The enhancing effect of PAF on PRL-mediated colony formation, PRL release, and mRNA activation was counteracted by pretreating BMSC with the PAF-receptor (R) antagonist WEB 2170. Lastly, responsiveness of BMSC to PAF was substantiated by the presence of the PAF-R mRNA on these cells.


1997 ◽  
Vol 185 (6) ◽  
pp. 1131-1136 ◽  
Author(s):  
Dirk Strunk ◽  
Claudia Egger ◽  
Gerda Leitner ◽  
Daniel Hanau ◽  
Georg Stingl

We have recently described a system for the generation of dendritic cells (DC) and Langerhans cells (LC) from defined CD34+ precursors purified from peripheral blood of healthy adult volunteers (1). This study has now been extended by the characterization of two distinct subpopulations of CD34+ cells in normal human peripheral blood as defined by the expression of the skin homing receptor cutaneous lymphocyte-associated antigen (CLA). CD34+/CLA+ cells from normal peripheral blood were found to be CD71LOW/CD11a+/CD11b+/CD49d+/ CD45RA+ whereas CD34+/CLA− cells displayed the CD71+/CD11aLOW/CD11bLOW/CD49d(+)/ CD45RALOW phenotype. To determine the differentiation pathways of these two cell populations, CD34+ cells were sorted into CLA+ and CLA− fractions, stimulated with GM-CSF and TNF-α in vitro, and then were cultured for 10 to 18 d. Similar to unfractionated CD34+ cells, the progeny of both cell populations contained sizable numbers (12–22%) of dendritically shaped, CD1a+/HLA-DR+++ cells. In addition to differences in their motility, the two dendritic cell populations generated differed from each other by the expression of LC-specific structures. Only the precursors expressing the skin homing receptor were found to differentiate into LC as evidenced by the presence of Birbeck granules. In contrast, CLA− precursor cells generated a CD1a+ DC population devoid of Birbeck granule–containing LC. Provided that comparable mechanisms as found in this study are also operative in vivo, we postulate that the topographic organization of the DC system is already determined, at least in part, at the progenitor level.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Graziella Bellone ◽  
Paola Astarita ◽  
Elisa Artusio ◽  
Stefania Silvestri ◽  
Katia Mareschi ◽  
...  

Abstract Cooperation between in vitro exogenous prolactin (PRL), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-3 (IL-3) at an early step of in vitro erythroid differentiation has been shown in a previous study. To gain more insight into the role of PRL in in vivo hematopoiesis, we have now addressed the involvement of endogenous PRL in the growth of hematopoietic progenitors in a bone marrow (BM) stroma environment. The possible modulation of local PRL production by the inflammatory mediator platelet-activating factor (PAF), which is known to be produced by BM cells and to regulate pituitary PRL release, has also been evaluated. Development of burst-forming unit-erythroid (BFU-E) colonies from CD34+ hematopoietic progenitors cultured on a BM stroma cells (BMSC) layer was slightly, but significantly, reduced in the presence of an antihuman PRL antibody. Pretreatment of BMSC with PAF increased the BFU-E colony efficiency of cocultured CD34+ cells, and this effect was completely abrogated by the antiserum. PAF-modulated release of PRL by BMSC was confirmed by an enzyme-linked-immunospot (Elispot) technique. In addition, immunoprecipitation and Western blotting experiments showed two immunoreactive products in the BMSC culture medium. These corresponded to the nonglycosylated (23 kD) and glycosylated (25.5 kD) forms of pituitary PRL that are also expressed by the B-lymphoblastoid cell line IM9-P3. Specific increase of the nonglycosylated form and decrease of the glycosylated form was observed after PAF treatment. Polymerase chain reaction (PCR) amplification of reverse transcribed RNA using PRL-specific primers showed the presence of PRL message in BMSC and IM9-P3 cells. In situ hybridization experiments with a rat PRL cDNA probe cross-reacting with human PRL mRNA confirmed its presence in a small fraction of unstimulated BMSC and in the majority of PAF-stimulated BMSC. The enhancing effect of PAF on PRL-mediated colony formation, PRL release, and mRNA activation was counteracted by pretreating BMSC with the PAF-receptor (R) antagonist WEB 2170. Lastly, responsiveness of BMSC to PAF was substantiated by the presence of the PAF-R mRNA on these cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3569-3569
Author(s):  
Brooke Snetsinger ◽  
Caroline Lin ◽  
Willy Weng ◽  
Alyssa Cull ◽  
Kate Sponagle ◽  
...  

Abstract Introduction Among FVIII-treated hemophilia A (HA) patients, 25-30% develop FVIII antibodies that inhibit its pro-coagulant function. However, the etiology of FVIII inhibitor formation remains poorly understood, particularly the role played by myeloid innate immune cells. Myeloid-derived suppressor cells (MDSC – CD11b/Gr1 co-expressing, immunosuppressive myeloid cells found in peripheral blood, lymphoid tissue and bone marrow) are expanded in cancer and inhibit adaptive immune responses against tumors. MDSC also mediate organ transplant tolerance. Therefore, we investigated MDSC dynamics during the course of FVIII exposure in HA mice and the potential to harness MDSC as a novel means of mediating FVIII tolerance. Methods 6 to 12 week-old F8-knockout Balb/c hemophilia A mice (HA mice) were used in accordance with Queen's University Animal Care Committee protocols. Over 3 independent experiments, HA mice were either untreated (Week 0; n = 4-6) or tail vein infused weekly for 2 or 4 weeks with 2 IU rhFVIII (Kogenate-FS for 2 experiments or Advate for one; n = 6 and 7, at 2 and 4 weeks) or 200 μl HBSS vehicle alone (n = 4 and 5). Alternatively HA mice were infused weekly with 2 pdFVIII (Wilate) for 2 (n = 2) or 4 weeks (n = 2) or subjected to a 4-day G-CSF preconditioning regimen during Week minus-1 (10 μg/day, SC, in 200 μl HBSS; n = 4) or HBSS alone (n = 4), followed by 2 or 4 weekly rFVIII infusions. Red cell-lysed blood, spleen and bone marrow suspensions were subjected to MDSC flow cytometry using anti-CD11b(Mac1)-APC and anti-Gr1-PE (Miltenyi Biotec). Week 2 and 4 plasma was subjected to anti-FVIII antibody ELISA and Bethesda assays. Means were compared using student's t-test. Results HA mice contained CD11b+Gr1+ MDSC in expected proportions in the blood, bone marrow and spleen. Peripheral blood MDSC proportions declined significantly from baseline following 4 weeks of rFVIII infusions (baseline mean 12.6%, versus 5.9% at 4 weeks, p = 0.041) (Figure 1A). More striking, however, was the observation of diminishing CD11b expression within all three MDSC compartments during the course of rFVIII exposure (magnitude of reduction: 46-65%; at 4 weeks in blood, p = 0.0011; at 2 and 4 weeks in bone marrow, p = 0.0014 and 0.0002; spleen, p = 0.057 and<0.0001) (Figure 1B). To our knowledge, diminished CD11b expression by MDSC has not been previously reported. Suggesting functional significance, 20-40% higher CD11b expression by week 4 MDSC in pdFVIII(Wilate)-treated HA mice (n = 2) was associated with 5 to 30-fold lower Bethesda unit inhibitors as compared to rFVIII. Further in vivo and in vitro studies are underway to confirm the functional impact of diminished MDSC CD11b expression. Next, in anticipation of future adoptive transfer experiments, we asked whether MDSC could be expanded in vitro from the BM of FVIII-na•ve HA mice. Using established 4-day MDSC culture conditions (GM-CSF + IL-6, Marigo et al., Immunity, 2010; or GM-CSF + G-CSF + day-3 IL-13, Highfill et al., Blood, 2010) we were able to achieve 7- to 10-fold expansion of MDSC over standard BM culture. Finally, in anticipation of future expansion of endogenous HA MDSC, we pre-treated a subset of mice with G-CSF (known to expand MDSC in vivo) (n = 4) versus HBSS vehicle (n = 4), followed by weekly rFVIII infusions. Encouragingly, we observed 2- to 4-fold reduced anti-FVIII antibody titres and functional inhibitors in G-CSF-pre-treated mice. G-CSF expansion of MDSC was modest and we are currently optimizing endogenous MDSC expansion regimens. Conclusions For the first time, to our knowledge, we assessed the dynamics of endogenous MDSC in FVIII-treated HA mice, revealing decreased circulating MDSC after 4 weeks of rFVIII exposure, and diminished CD11b expression in all examined MDSC compartments. We hypothesize this phenomenon leads to impaired MDSC function, necessary to mount an optimal adaptive immune response to FVIII, although this awaits further confirmation. Finally, our studies suggest it is feasible to expand MDSC ex vivo from na•ve HA bone marrow for future adoptive transfer experiments, and to expand endogenous HA MDSC using growth factors such as G-CSF, as novel investigative approaches to mediating FVIII tolerance. If warranted by murine studies, G-CSF may be an attractive novel immune tolerance strategy, given extensive clinical experience with human G-CSF administration. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (7) ◽  
pp. 923-934 ◽  
Author(s):  
Angela Coxon ◽  
Tao Tang ◽  
Tanya N. Mayadas

The activation of endothelium is important in recruiting neutrophils to sites of inflammation and in modulating their function. We demonstrate that conditioned medium from cultured, activated endothelial cells acts to significantly delay the constitutive apoptosis of neutrophils, resulting in their enhanced survival and increased phagocytic function. The antiapoptotic activity is, in part, attributable to granulocyte/macrophage colony-stimulating factor (GM-CSF) secreted by activated endothelial cells. The in vivo relevance of these findings was investigated in a cytokine-induced model of acute meningitis in mice. Peripheral blood neutrophils (PBNs) from mice with meningitis exhibited a delay in apoptosis compared with untreated mice. Furthermore, neutrophils recovered from the inflamed cerebrospinal fluid (CSF) exhibited enhanced survival compared with neutrophils isolated from the peripheral blood of the same animals. In unchallenged GM-CSF–deficient mice, the apoptosis of circulating PBNs was similar to wild-type animals; however, after cytokine-induced meningitis, the delay in neutrophil apoptosis typically observed in wild-type mice was attenuated. In contrast, the apoptosis of neutrophils recovered from the CSF of mice of both genotypes was comparable. Taken together, these studies suggest that neutrophil apoptosis is regulated during an inflammatory response, in both intravascular and extravascular compartments. GM-CSF released by activated endothelium can act to increase neutrophil survival and function in the peripheral blood, whereas other factor(s) appear to perform this function in the extravascular space.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 483-491
Author(s):  
Xiaobo Li ◽  
Binliang Wang ◽  
Mao Huang ◽  
Xiaomi Wang

AbstractThis study aimed to investigate the role and relevant mechanism of miR-30a-3p action in asthma. The results of this study revealed that the expression levels of miR-30a-3p were significantly decreased in the peripheral blood of asthmatic patients. In addition, we found that the CC chemokine receptor (CCR3) was a target of miR-30a-3p. Subsequently, an asthma mouse model was established using ovalbumin (OVA). The results showed that the expression of miR-30a-3p and CCR3 was downregulated and upregulated, respectively, in the peripheral blood of asthmatic mice. Enzyme-linked immunosorbent assay (ELISA) in asthmatic mouse serum demonstrated that miR-30a-3p mimic treatment significantly decreased the secretion of OVA-specific IgE, eotaxin-1, interleukin (IL)-5, and IL-4. These results suggested that miR-30a-3p inhibited CCR3 signaling pathway and relieved the inflammatory response against asthma in vivo. Eosinophils have also been implicated in the asthmatic inflammatory response. Therefore, the in vitro effects of miR-30a-3p on eosinophil activity were determined. Findings suggested that miR-30a-3p mimic significantly reduced eosinophil viability and migration and induced apoptosis. In addition, CCR3 and eotaxin-1 downregulation were observed. The aforementioned results were significantly reversed following CCR3 overexpression. This study suggested that miR-30a-3p was involved in asthma by regulating eosinophil activity and targeting CCR3.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2952-2959 ◽  
Author(s):  
R Sehmi ◽  
AJ Wardlaw ◽  
O Cromwell ◽  
K Kurihara ◽  
P Waltmann ◽  
...  

We have attempted to determine whether interleukin-5 (IL-5), a cytokine that selectively affects eosinophil (as opposed to neutrophil) differentiation and activation, also modulates eosinophil migrational responses. Using a modified Boyden chemotaxis assay, IL-5, IL-3, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gave a weak locomotory response for eosinophils from normal nonatopic subjects (optimal at 10(-11), 10(-8), and 10(-9) mol/L, respectively), but not for eosinophils from subjects with an eosinophilia associated with asthma and/or allergic rhinitis. In contrast, IL-5 and IL-3 had no effect on neutrophils, while GM-CSF was chemotactic for neutrophils over a limited concentration range, optimal at 10(-8) mol/L. When eosinophils from normal subjects were incubated with IL-5 (10(-9) mol/L), the locomotory response to platelet-activating factor (PAF; 10(- 8) mol/L, P less than .05), leukotriene B4 (LTB4; 10(-6) mol/L, P less than .01), and N-formyl-methionyl-leucyl-phenylalanine (FMLP; 10(-8) mol/L, P less than .01) was significantly enhanced. The percentage enhancement of eosinophil locomotion by IL-5 was greater for eosinophils from normal as compared with subjects with an eosinophilia associated with asthma (P less than .05 for PAF and LTB4; P less than .01 for FMLP). Preincubation of eosinophils from normal subjects with IL-5 (10(-9) mol/L) attenuated the subsequent locomotory response to IL- 5 (10(-12) and 10(-11) mol/L, P less than .05). Therefore, the observed refractoriness of eosinophils from eosinophilic subjects to both directional migratory and priming effects of IL-5 in vitro, may reflect a deactivation process resulting from prior exposure in vivo. The selective priming of eosinophil but not neutrophil locomotion by IL-5 suggests that this cytokine may play a significant role in the preferential accumulation of eosinophils at sites of allergic inflammation.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2952-2959 ◽  
Author(s):  
R Sehmi ◽  
AJ Wardlaw ◽  
O Cromwell ◽  
K Kurihara ◽  
P Waltmann ◽  
...  

Abstract We have attempted to determine whether interleukin-5 (IL-5), a cytokine that selectively affects eosinophil (as opposed to neutrophil) differentiation and activation, also modulates eosinophil migrational responses. Using a modified Boyden chemotaxis assay, IL-5, IL-3, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gave a weak locomotory response for eosinophils from normal nonatopic subjects (optimal at 10(-11), 10(-8), and 10(-9) mol/L, respectively), but not for eosinophils from subjects with an eosinophilia associated with asthma and/or allergic rhinitis. In contrast, IL-5 and IL-3 had no effect on neutrophils, while GM-CSF was chemotactic for neutrophils over a limited concentration range, optimal at 10(-8) mol/L. When eosinophils from normal subjects were incubated with IL-5 (10(-9) mol/L), the locomotory response to platelet-activating factor (PAF; 10(- 8) mol/L, P less than .05), leukotriene B4 (LTB4; 10(-6) mol/L, P less than .01), and N-formyl-methionyl-leucyl-phenylalanine (FMLP; 10(-8) mol/L, P less than .01) was significantly enhanced. The percentage enhancement of eosinophil locomotion by IL-5 was greater for eosinophils from normal as compared with subjects with an eosinophilia associated with asthma (P less than .05 for PAF and LTB4; P less than .01 for FMLP). Preincubation of eosinophils from normal subjects with IL-5 (10(-9) mol/L) attenuated the subsequent locomotory response to IL- 5 (10(-12) and 10(-11) mol/L, P less than .05). Therefore, the observed refractoriness of eosinophils from eosinophilic subjects to both directional migratory and priming effects of IL-5 in vitro, may reflect a deactivation process resulting from prior exposure in vivo. The selective priming of eosinophil but not neutrophil locomotion by IL-5 suggests that this cytokine may play a significant role in the preferential accumulation of eosinophils at sites of allergic inflammation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 12-13
Author(s):  
Yankai Zhang ◽  
Celeste K. Kanne ◽  
Jennifer N. Tran ◽  
Michael J. Lacagnina ◽  
Peter M. Grace ◽  
...  

Background: Individuals with chronic pain may have hyperactive microglia, which stimulate neurons to send a pain signal with little or no stimuli. Microglia are therefore a potential drug target to treat chronic pain, but drug discovery has been stymied by differences between human and animal neurobiology, and lack of healthy human CNS microglia. We cultured peripheral blood derived monocytes to develop characteristics of CNS derived microglia, termed peripheral blood derived microglia like cells (PB-MLC). We found that lipopolysaccharide (LPS) treated PB-MLCs from patients with chronic pain, from sickle cell disease (SCD) or chronic headaches, secreted more pro-inflammatory cytokines (TNF-alpha, IL-1beta, and IL-6) than PB-MLCs from normal donors, suggesting that patient pain phenotype was preserved in culture; PB-MLC from individuals with chronic pain were hyperactive in vitro as their microglia are in vivo. We hypothesize that PB-MLCs can be developed as a cell-based assay to screen compounds to treat chronic pain. To validate our model system, we compared cultured PB-MLCs to CNS derived microglia cells, using Sprague-Dawley rats, and treated human PB-MLC with microglia activation inhibitors shown to work in vivo in murine models. Methods: We isolated rat brain derived microglia (BDM) and rat peripheral blood monocytes; both were cultured with murine IL-34 (100 ng/ml) and GM-CSF (10 ng/ml). BDM and rPB-MLC were morphologically analyzed by fluorescence imaging microscopy, combined with machine learning, phenotyped by RT-qPCR and indirect immunofluorescence with anti-TMEM119, CD68, and Iba1 antibodies. Cells were treated with LPS for 24 hours, and TNF-alpha, IL-1beta, and IL-6 secretion measured by ELISA. For human PB-MLC studies, monocytes were cultured with GM-CSF (10 ng/ml) and IL-34 (100 ng/ml) for 7 days. PB-MLC morphology was analyzed as above; phenotyped with anti-CX3CR1, TMEM119, CD68, and Iba1 antibodies. PB-MLCs were treated with 100 ng/ml LPS with or without minocycline (2.5, 5, 10, 25 μg/mL), clopidogrel (1, 2, 4 μM) and MRS2395 (1, 5, 10 μM), for 24 h; TNF-alpha and IL-1beta secretion measured by ELISA. Results: We found that rPB-MLC resemble BDM morphologically, express the same microglia specific markers (TMEM119, P2RY12) and can be activated by LPS (Figure 1). Monocytes not cultured with IL-34 and GM-CSF did not express microglia specific genes (Figure 2A). To evaluate the possibility of using the PB-MLC model system to screen compounds to inhibit microglia activation, we tested PB-MLC cells with the following microglial inhibitors shown to be active in murine models in vivo: minocycline, MRS2395, and clopidogrel. MRS2395 and clopidogrel significantly suppressed the release of proinflammatory cytokine TNF-alpha from LPS-induced activated PB-MLCs in a dose-dependent manner (Figure 2B); minocycline did not. Conclusions: We validated our model system by comparing CNS derived microglia to rPB-MLCs and found they share morphology, similar cytokine secretion in response to LPS, and expression of microglia-specific genes. We confirmed that human PB-MLC expressed microglia specific genes while the original monocytes did not. Since P2Y12 is implicated in chronic pain, we tested two P2Y12 receptor agonists, clopidogrel and MRS2395, in our human PB-MLC system. When challenged with LPS, clopidogrel and MRS2395 inhibited LPS-induced PB-MLC activation in vitro as it had in vivo in a murine chronic pain model. We propose to use our human PB-MLC to screen for compounds that reduce microglia hyperactivity, to identify pharmacologic agents to treat chronic pain. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document