KLF4 Regulates Self-Renewal of Leukemic Stem Cells in Chronic Myeloid Leukemia By Repressing Gbl Expression and Altering mTORC2 Activity

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1789-1789
Author(s):  
Chun Shik Park ◽  
Ye Shen ◽  
Takeshi Yamada ◽  
Koramit Suppipat ◽  
Monica Puppi ◽  
...  

Abstract Tyrosine kinase inhibitors (TKIs) are the standard treatment for eradicating BCR-ABL-positive progenitor cells in chronic myeloid leukemia (CML); however, disease often relapses upon drug discontinuation because TKIs do not effectively eliminate leukemic stem cells (LSC). The development of novel strategies aimed at eradicating LSC without harming normal hematopoietic stem cells (HSC) is essential for the cure of CML patients. The generation of LSC-directed therapy relies on the identification of novel molecular pathways that selectively regulate LSC function independent of BCR-ABL. The Krüppel-like factor 4(KLF4) is a transcription factor that can either activate or repress gene transcription acting as an oncogene or a tumor suppressor depending on the cellular context. Analysis of a published dataset from chronic phase CML patients revealed elevated levels of KLF4 in LSC compared to progenitor cells indicating that KLF4 is likely implicated in LSC regulation. To study the role of KLF4 in LSC function, we used a CML mouse model combining somatic deletion of the Klf4 gene and retroviral transduction and transplantation of HSC. In contrast to mice receiving BCR-ABL-transduced Klf4fl/fl HSC that developed and succumbed to CML, mice transplanted with BCR-ABL-transduced Klf4Δ/Δ (Klf4fl/fl Vav-iCre+) HSC showed a progressive loss of leukemia despite an initial expansion of myeloid leukemic cells, which led to increased overall survival. This inability to sustain CML in the absence of KLF4 was caused by attrition of LSC in bone marrow and the spleen. Furthermore, deletion of KLF4 impaired the ability of LSC to recapitulate leukemia in secondary recipients suggesting a loss of self-renewal capacity. In contrast to LSC, KLF4 deletion led to increased self-renewal of normal HSC assessed by serial competitive transplantation. To identify KLF4 target genes involved in LSC self-renewal, we performed a global gene expression analysis using Klf4Δ/Δ LSC purified by cell sorting from leukemic mice. Analysis of gene expression in Klf4Δ/Δ LSC revealed significant upregulation of GβL, a component of mTOR complexes. Finally, we identified that KLF4 binds to GβL promoter by Chip-Seq analysis and that silencing resulted in inhibition of mTORC2 but not mTORC1 activity in 32D-BCR-ABL-positive CML cells. Our findings suggest that KLF4 transcriptionally represses GβL expression in LSC and that mTORC2 inhibition has the potential to completely eradicate LSC and induce treatment-free remission. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1879-1879
Author(s):  
Chun Shik Park ◽  
Ye Shen ◽  
Koramit Suppipat ◽  
Andrew Lewis ◽  
Julie Tomolonis ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a blood cancer originated by expression of BCR-ABL, a constitutively activated kinase product of the chromosomal translocation t(9;22), in hematopoietic stem cells (HSC). Although tyrosine kinase inhibitors (TKI) can efficiently induce molecular remission in CML patients, drug discontinuation often leads to relapse caused by reactivation of leukemic stem cells (LSC) spared from TKI therapy via BCR-ABL-independent mechanisms of self-renewal and survival. Thus, there is a need for alternative drugs for relapse patients to prevent expansion of BCR-ABL-positive LSC during discontinuation of chemotherapy or emergence of chemoresistance. We found that somatic deletion of the reprogramming factor Krüppel-like factor 4 (KLF4) in BCR-ABL(p210)-induced CML severely impaired disease maintenance. This inability to sustain CML in the absence of KLF4 was caused by a progressive attrition of LSCs in bone marrow and the spleen and impaired ability of LSCs to recapitulate leukemia in secondary recipients. Analyses of global gene expression and genome-wide binding of KLF4 revealed that the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) is repressed by KLF4 in CML LSCs. Immunoblots revealed elevated levels of DYRK2 protein that were associated with a reduction of c-Myc protein and increased levels of p53 (S46) phosphorylation and PARP cleavage in KLF4-deficient LSCs purified from the bone marrow of CML mice. Genomic silencing of KLF4 in the murine CML cell line 32D-BCR-ABL resulted in increased levels of DYRK2 and phosphorylated c-Myc (S62) leading to diminished levels of c-Myc protein, which was reverted by treatment with a proteasome inhibitor, suggesting that KLF4 prevents c-Myc degradation triggered by DYRK2-mediated priming phosphorylation. Consistent with an inhibitory role in leukemia, DYRK2 levels are significantly reduced both in CD34+CD38+ and CD34+CD38− cells from CML patients compared to normal stem/progenitor cells. Aiming at pharmacological activation of DYRK2 to abrogate self-renewal and survival of CML cells, we treated CML cells with vitamin K3 that inhibits Siah2, an ubiquitin E3 ligase involved in Dyrk2 proteolysis. Vitamin K3, and not Vitamin K1 and K2, induces dose-dependent cytotoxicity in a panel of human-derived CML cell lines by stabilizing Dyrk2 protein and consequently promoting c-Myc degradation. Interestingly, combination of vitamin K3 with Imatinib exhibit additive effect inducing cytotoxicity in CML cells. Collectively, the identification of Dyrk2 as a critical mediator of LSC downfall is a novel paradigm poised to support the development of LSC-specific therapy to induce treatment-free remission in conjunction with Imitinib in CML patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


Blood ◽  
1993 ◽  
Vol 81 (3) ◽  
pp. 801-807 ◽  
Author(s):  
T Leemhuis ◽  
D Leibowitz ◽  
G Cox ◽  
R Silver ◽  
EF Srour ◽  
...  

Abstract Chronic myeloid leukemia (CML) is a malignant disorder of the hematopoietic stem cell. It has been shown that normal stem cells coexist with malignant stem cells in the bone marrow of patients with chronic-phase CML. To characterize the primitive hematopoietic progenitor cells within CML marrow, CD34+DR- and CD34+DR+ cells were isolated using centrifugal elutriation, monoclonal antibody labeling, and flow cytometric cell sorting. Polymerase chain reaction analysis of RNA samples from these CD34+ subpopulations was used to detect the presence of the BCR/ABL translocation characteristic of CML. The CD34+DR+ subpopulation contained BCR/ABL(+) cells in 11 of 12 marrow samples studied, whereas the CD34+DR- subpopulation contained BCR/ABL(+) cells in 6 of 9 CML marrow specimens. These cell populations were assayed for hematopoietic progenitor cells, and individual hematopoietic colonies were analyzed by PCR for their BCR/ABL status. Results from six patients showed that nearly half of the myeloid colonies cloned from CD34+DR- cells were BCR/ABL(+), although the CD34+DR- subpopulation contained significantly fewer BCR/ABL(+) progenitor cells than either low-density bone marrow (LDBM) or the CD34+DR+ fraction. These CD34+ cells were also used to establish stromal cell-free long-term bone marrow cultures to assess the BCR/ABL status of hematopoietic stem cells within these CML marrow populations. After 28 days in culture, three of five cultures initiated with CD34+DR- cells produced BCR/ABL(-) cells. By contrast, only one of eight cultures initiated with CD34+DR+ cells were BCR/ABL(-) after 28 days. These results indicate that the CD34+DR- subpopulation of CML marrow still contains leukemic progenitor cells, although to a lesser extent than either LDBM or CD34+DR+ cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3881-3881
Author(s):  
Sun-Mi Park ◽  
Hyunwoo Cho ◽  
Angela Thornton ◽  
Trevor Stephen Barlowe ◽  
Timothy Chou ◽  
...  

Abstract Myeloid leukemic stem cells are maintained by programs that drive self-renewal and block myeloid differentiation through both genetic and epigenetic mechanisms. Previously, we found the chromatin remodeler IKZF2 as a target of RNA binding protein MSI2 which is a central regulator of translation in stem cell programs. In contrast to being commonly deleted in hypodiploid B-cell Acute Lymphoblastic Leukemia and acting as a tumor suppressor, we propose that IKZF2 is required for myeloid leukemia. Although IKZF2 is highly expressed in hematopoietic stem cells (HSC), we found that it is dispensable for HSC function utilizing IKZF2 deficient mice. IKZF2 is also highly expressed in leukemic stem cells (LSCs) in a murine MLL-AF9 model. Conditional deletion of Ikzf2 in the hematopoietic system with Vav-Cre system, significantly impaired LSC function as assessed through limiting dilution assays (LSC frequency is 1:7,697 in Ikzf2-deficient cells versus 1:122 cells in wildtype cells) and serial transplantations. IKZF2 deletion with a tamoxifen inducible Cre (Cre-ER) in established leukemias resulted in reduced colony formation, increased differentiation and apoptosis while delaying leukemogenesis. Furthermore, shRNA depletion of IKZF2 in another murine AML model using the oncogene AML1-Eto9a also showed reduced colony formation and delayed leukemogenesis, suggesting that IKZF2 is required for myeloid leukemia. Similar to the mouse HSCs, shRNA depletion of IKZF2 in human CD34+ enriched cord blood HSPCs resulted in no overt phenotype in colony formation, differentiation and apoptosis. Intracellular flow cytometry for IKZF2 revealed that IKZF2 is highly expressed in the CD34+CD38- fraction compared to the CD34- fraction in nine AML patients. Notably, IKZF2 depletion with shRNAs resulted in reduced frequency of CD34+CD38- fraction and reduced colony formation in AML patient samples. Depletion of IKZF2 in five human AML cell lines (MOLM-13, KCL-22, KASUMI-1, NOMO-1 and NB-4) with different oncogenes also resulted in reduced proliferation, increased differentiation and increased apoptosis. These data suggest that IKZF2 is differentially required in myeloid leukemia cells compared to normal cells. Mechanistically, ATAC-sequencing (assay for transposase-accessible chromatin with sequencing) in MLL-AF9 LSCs revealed that a substantial portion of the decreased accessibility changes occur in the intronic regions (34.65% for open peaks compared with 45.95% for closed peaks) whereas more promoter regions are opened than closed (21.26% for open peaks; 12.77% for closed peaks) when IKZF2 is lost. This suggests that IKZF2 loss leads to reduced accessibility preferentially occurring in intronic enhancers whereas increased accessibility was found at promoters. Motif enrichment analysis from the combinatorial assessment of RNA-sequencing, chromatin accessibility by ATAC-seq and direct binding of IKZF2 by the cut and run method in MLL-AF9 LSCs identified the C/EBPδ and C/EBPε as the most accessible motifs whereas HOXA9 motif became less accessible in the Ikzf2 deleted LSCs. More specifically, we found 13 genes bound by IKZF2 that contained C/EBP motifs that had also increased accessibility (Log2FC>1, pval<0.05) and increased gene expression (Log2FC>0.75, pval<0.05) in Ikzf2 deleted MLL-AF9 LSCs. Using the cre-ER expressing MLL-AF9 LSCs, we validated that C3, Fpr2, S100a8 and S100a9 were upregulated after acute deletion. These direct targets and CEBP expression correlated with IKZF2 expression in the TCGA AML patient cohort. Furthermore, forced HOXA9 expression could partially rescue the colony formation, differentiation and apoptosis effects after Ikzf2 was deleted by tamoxifen treatment. Additionally, CEBPE depletion by shRNAs partially rescued the effects of IKZF2 deletion. Thus, we demonstrate that IKZF2 is dispensable for normal hematopoiesis but required for maintaining LSC function. We find that IKZF2 can act as a chromatin remodeler that regulates the self-renewal HOXA9 gene expression program and inhibits C/EBP driven differentiation program in LSCs. Our study provides the rationale to therapeutically target IKZF2 in myeloid leukemia. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2772-2772
Author(s):  
Qingfei Jiang ◽  
Leslie Crews-Robertson ◽  
Christian L Barrett ◽  
Hyn-June Chun ◽  
Angela C. Court-Recart ◽  
...  

Abstract Abstract 2772 While advanced malignancies in Chronic Myeoloid Leukemia (CML) are diverse in phenotype, they often exhibit stem cell properties including enhanced survival, quiescence and self-renewal potential. The molecular etiology of human progenitor reprogramming into self-renewing leukemia stem cells (LSC) has remained elusive. While DNA sequencing has uncovered spliceosome gene mutations that promote alternative splicing and portend leukemic transformation, isoform diversity may also be generated by aberrant RNA editing mediated by adenosine deaminase acting on dsRNA (ADAR) family, which have been shown to promote an embryonic transcriptional program and regulate fetal and adult hematopoietic stem cell (HSC) self-renewal as well as stem cell responses to inflammation. In this study, whole transcriptome sequencing of normal, chronic phase (CP) and functionally validated blast crisis (BC) chronic myeloid leukemia (CML) progenitors revealed increased inflammatory pathway gene expression in concert with BCR-ABL amplification, enhanced expression of interferon-responsive ADAR1 and a propensity for increased A-to-I RNA editing during CML progression. Mechanistic studies demonstrated that lentivirally enforced ADAR1 p150 expression induced expression of the myeloid-skewing transcription factor PU.1 and skewed cell fate towards granulocyte-macrophage progenitors - the initiating LSC population in BC CML. Moreover, lentiviral ADAR1 knockdown reduced BC LSC self-renewal capacity in RAG2−/−gc−/− mice. These data shed new light on the role of ADAR1-directed RNA editing in myeloid progenitor reprogramming and self-renewal potential of malignant progenitors that drive disease progression and therapeutic resistance in CML, and provide a compelling rationale for developing ADAR1-based LSC detection and eradication strategies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3764-3764
Author(s):  
Patali S Cheruku ◽  
Marina Bousquet ◽  
Guoqing Zhang ◽  
Guangtao Ge ◽  
Wei Ying ◽  
...  

Abstract Leukemic stem cells (LSCs) are derived from hematopoietic stem or progenitor cells and often share gene expression patterns and specific pathways. Characterization and mechanistic studies of LSCs are critical as they are responsible for the initiation and potential relapse of leukemias, however the overall framework, including epigenetic regulation, is not yet clear. We previously identified microRNA-150 (miR-150) as a critical regulator of mixed lineage leukemia (MLL) -associated leukemias by targeting oncogenes. Our additional results suggest that miR-150 can inhibit LSC survival and disease initiating capacity by suppressing more than 30% of “stem cell signature genes,” hence altering multiple cancer pathways and/or stem cell identities. MLL-AF9 cells derived from miR-150 deficient hematopoietic stem/progenitor cells displayed significant proliferating advantage and enhanced leukemic colony formation. Whereas, with ectopic miR-150 expression, the MLL-AF9 associated LSC population (defined as Lin-ckit+sca1- cells) was significantly decreased in culture. This is further confirmed by decreased blast leukemic colony formation in vitro. Furthermore, restoration of miR-150 levels in transformed MLL-AF9 cells, which often display loss of miR-150 expression in AML patients with MLL-fusion protein expressing, completely blocked the myeloid leukemia development in a transplantation mouse model. Gene profiling analysis demonstrated that an increased level of miR-150 expression down regulates 30 of 114 stem cell signature genes by more than 1.5 fold, partially mediated by the suppressive effects of miR-150 on CBL, c-Myb and Egr2 oncogenes. In conclusion, our results suggest that miR-150 is a potent MLL-AF9 leukemic inhibitor that may act by suppressing the survival and leukemic initiating potency of MLL-AF9 LSCs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 887-887 ◽  
Author(s):  
Hangyu Yi ◽  
Jianlong Wang ◽  
Maria Kavallaris ◽  
Jenny Yingzi Wang

Abstract Although the clinical importance of aberrant Wnt/β-catenin signaling has been recognized in various cancers, including MLL-rearranged acute myeloid leukemia (MLL AML), its key tractable pathway components have not yet been discovered in leukemic stem cells (LSC). Our studies have identified an Rspo3/Wnt3a-Lgr4-Gnaq pathway, which significantly potentiates β-catenin signaling in MLL LSC. Genetic and pharmacological targeting of this pathway impairs LSC self-renewal and survival, inhibiting MLL-AF9-induced leukemia progression in vivo. Gene expression analysis of AML patient samples (Nucleic Acids Res, 41:D1034-9, 2013) revealed an approximately 3-fold increase (p=0.00002) in expression of leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) in leukemic cells from patients with MLL AML compared to normal human hematopoietic stem cells (HSC). As recent studies have highlighted a critical link between R-spondin (Rspo)/Lgr4 and Wnt/β-catenin signaling pathways, we hypothesized that up-regulation of Lgr4 is associated with aberrant activation of β-catenin signaling in MLL LSC. We have previously demonstrated that β-catenin is highly expressed in HSC transformed by MLL-AF9 and is lower in HSC transduced with leukemic oncogenes such as Hoxa9/Meis1, while increased β-catenin expression is correlated with a poor survival rate in mice. In this study, western blots confirmed high levels of Lgr4 expression in HSC expressing MLL-AF9 compared to Hoxa9/Meis1. ShRNA-mediated stable knockdown of Lgr4 markedly reduced colony formation of HSC expressing MLL-AF9 by 55-65% (p=0.0001) and significantly prolonged mouse survival (p=0.0019) through its inhibition of endogenous β-catenin expression. This deficient phenotype could be rescued by expression of a constitutively active form of β-catenin. Furthermore, ectopic expression of Lgr4 alone was not sufficient for triggering the leukemic transformation of HSC but conferred a growth advantage in vivo to HSC expressing Hoxa9/Meis1 and significantly accelerated the onset of Hoxa9/Meis1-induced AML in mice (p=0.0011). These data support an oncogenic role of Lgr4 in promoting tumor formation through activation of β-catenin signaling. As Lgr4 has recently been identified as a receptor for the Rspo family of secreted proteins (Rspo1–Rspo4), we sought to determine if Rspo is a positive regulator of β-catenin signaling in MLL AML. We found that only the combination of Rspo3 and Wnt3a potently enhanced β-catenin signaling in HSC expressing MLL-AF9 whereas Rspo and Wnt3a alone or the combination of Wnt3a with other Rspo had no effects on β-catenin activity. Depletion of Lgr4 completely abolished Rspo3/Wnt3a-induced β-catenin signaling, suggesting Rspo3/Wnt3a potentiating β-catenin signaling through Lgr4. Next, we assessed if Lgr4 signals through G protein pathways. By testing G protein alpha inhibitors in MLL LSC, we demonstrated that G protein alpha-q (Gnaq) was required for maintenance of stem cell properties by chemical suppression of the Gnaq-activated β-catenin pathway with a Gnaq selective inhibitor, which exhibited a 3-fold decrease in colony formation (p=0.0001) and a 4-fold reduction in cell number (p=0.0009), and was sufficient to induce substantial cell differentiation and apoptosis. Treatment with Gnaq inhibitor abolished the effect of Lgr4 on β-catenin transactivation, implicating an Lgr4-Gnaq-β-catenin signaling pathway in MLL LSC. Microarray analysis of gene expression confirmed enrichment of genes related to cancer cell proliferation, migration and growth, as well as enrichment of Wnt target genes in LSC expressing Lgr4. Taken together, we report here an Rspo3/Wnt3a-Lgr4-Gnaq-β-catenin signaling circuit in MLL leukemogenesis. Interference with components of the circuit can block β-catenin signaling and perturb leukemia development. Thus, our findings provide potential therapeutic targets in treating LSC-based hematological malignancy driven by Wnt/β-catenin signaling. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Michael W. Deininger

Clinical staging of chronic myeloid leukemia (CML) distinguishes between chronic phase (CP-CML), accelerated phase (AP-CML), and blastic phase (BP-CML), reflecting its natural history in the absence of effective therapy. Morphologically, transformation from CP-CML to AP/BP-CML is characterized by a progressive or sudden loss of differentiation. Multiple different somatic mutations have been implicated in transformation from CP-CML to AP/BC-CML, but no characteristic mutation or combination of mutations have emerged. Gene expression profiles of AP-CML and BP-CML are similar, consistent with biphasic evolution at the molecular level. Gene expression of tyrosine kinase inhibitor (TKI)–resistant CP-CML and second CP-CML resemble AP/BP-CML, suggesting that morphology alone is a poor predictor of biologic behavior. At the clinical level, progression to AP/BP-CML or resistance to first-line TKI therapy distinguishes a good risk condition with survival close to the general population from a disease likely to reduce survival. Progression while receiving TKI therapy is frequently caused by mutations in the target kinase BCR-ABL1, but progression may occur in the absence of explanatory BCR-ABL1 mutations, suggesting involvement of alternative pathways. Identifying patients in whom milestones of TKI response fail to occur or whose disease progress while receiving therapy requires appropriate molecular monitoring. Selection of salvage TKI depends on prior TKI history, comorbidities, and BCR-ABL1 mutation status. Despite the introduction of novel TKIs, therapy of AP/BP-CML remains challenging and requires accepting modalities with substantial toxicity, such as hematopoietic stem cell transplantation (HSCT).


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4838-4838
Author(s):  
Lurdes Zamora ◽  
Marta Cabezon ◽  
Concha Boqué ◽  
Silvia Marce ◽  
Jordi Ribera ◽  
...  

Abstract Abstract 4838 Introduction: Chronic myeloid leukemia (CML) is a clonal hematopoietic malignancy characterized by the presence of BCR/ABL fusion gene. The resulting protein has a high tyrosine kinase (TK) activity. The first-line treatment for CML is Imatinib, which allow the achievement of cytogenetic and molecular response in most of patients with CML in chronic phase. However, some patients do not respond to this treatment or lose their initial response. Imatinib has been reported to be incorporated into the cell through hOCT1 transporter (human organic cation transporter). The aim of this study was to determine whether the expression of hOCT1 at diagnosis of CML influenced the achievement of molecular response. Patients and Methods: We analyzed hOCT1 gene expression by quantitative PCR in 42 patients at diagnosis and 18 months after treatment with Imatinib. We compared the expression with the presence of compleat molecular response (CMR) at 18 months. We consider CMR when the Ratio (BCR-ABL/ABL)×100 was <0.1% (after International Scale correction). For statistical analysis methods we have used Kolmogorov-Smirnov and Mann-Whitney nonparametric methods. Results: Of the 42 patients, 2 were in hematological response, 22 were in cytogenetic response and 18 in CMR at 18 months. We found a higher hOCT1 gene expression at 18 month than at diagnosis (53.3 versus 29.6, p<0.001) in all patients (Figure 1). We have found some tendency of higher hOCT1 expression at diagnosis in patients with CMR at 18 months than in those who did not had (25.5 versus 18.8, p = 0.07) (Figure 2). Conclusions: Partially funded by FICJ-P-EF-09, RD06/0020/1056 de RTICC and Novartis. We want to thank Dr. David Marin for providing us plasmid for quantitative analysis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1202-1202
Author(s):  
Akihiro Tamura ◽  
Hideyo Hirai ◽  
Yoshihiro Hayashi ◽  
Asumi Yokota ◽  
Atsushi Sato ◽  
...  

Abstract Our previous findings have revealed the requirement of CCAAT Enhancer Binding Protein β (C/EBPβ), a leucine zipper transcription factor, in emergency granulopoiesis (Hirai et al. Nat Immunol, 2006). During emergency situations such as infection, C/EBPβ is involved in the sufficient supply of granulocytes through amplification of hematopoietic stem/progenitor cells (Satake et al. J Immunol, 2012). In addition, we have shown that C/EBPβ is upregulated by downstream signaling of BCR-ABL and promotes myeloid expansion and leukemic stem cells exhaustion in chronic phase chronic myeloid leukemia (Hayashi et al. Leukemia, 2013). These observations suggested that C/EBPβ plays important roles in normal hematopoietic stem cells (HSCs). Here we investigated the cell-intrinsic and -extrinsic function of C/EBPβ in the regulation of HSCs by analyzing C/EBPβ knockout (KO) mice. At steady state, no obvious defects have been reported in hematopoiesis of C/EBPβ KO mice. Accordingly, the frequencies of long-term and short-term HSCs and various kinds of progenitor cells in bone marrows (BM) of C/EBPβ KO mice were identical to those in BM of wild type (WT) mice. To examine the functional consequences of C/EBPβ deletion, competitive repopulation assay was performed. In brief, 5x105 BM cells from WT or C/EBPβ KO mice (CD45.2+) and the same number of competitor CD45.1+ BM cells were transplanted into lethally irradiated CD45.1+ mice and the chimerisms of CD45.2+ cells in the peripheral blood of the recipient mice were monitored monthly. The chimerisms of C/EBPβ KO cells were significantly lower than that of WT cell at 1 month after transplantation and the differences were maintained thereafter (Figure A). In order to elucidate the reason for the difference, homing ability of C/EBPβ KO cells were assessed. Lineage depleted CD45.2+ WT or C/EBPβ KO BM cells together with the equal number of lineage negative CD45.1+ BM cells were transplanted into lethally irradiated CD45.1+ mice and the frequencies of CD45.2+ cells were analyzed 16 hours after transplantation. The frequencies of CD45.2+ WT and C/EBPβ KO donor cells in the recipient BMs were identical and the data indicated that the differences in the chimerisms after primary BM transplantation were due to the difference in the initial expansion of transplanted cells after equivalent levels of homing. To see the roles of C/EBPβ in hematopoiesis under stressed conditions, CD45.1+ mice were transplanted with CD45.2+ WT or C/EBPβ KO BM cells with equal numbers of CD45.1+ BM cells and these mice were administered with 150mg/kg 5-fluorouracil (5-FU) once a month and the chimerisms of peripheral blood were monitored every time before the next 5-FU administration. In consistent with the results mentioned above, the frequencies of CD45.2+ C/EBPβ KO cells were significantly lower than those of CD45.2+ WT cells 1 month after transplantation. After repetitive administration of 5-FU, however, the chimerisms of CD45.2+ C/EBPβ KO cells gradually caught up with those of CD45.2+ WT cells, suggesting that C/EBPβ is involved in the exhaustion of HSCs under stressed conditions (Figure B). To explore the functions of C/EBPβ in hematopoietic microenvironments, 1x106 CD45.1+ BM cells from WT mice were transplanted into irradiated (5Gy or 7Gy) WT or C/EBPβ KO mice (CD45.2+). All the WT recipient mice survived after 5Gy or 7Gy irradiation (4/4 and 4/4, respectively). In contrast, only 2/4 and 1/4 C/EBPβ KO recipient mice survived after 5Gy or 7Gy irradiation, respectively. We are currently trying to identify the cells expressing C/EBPβ in BM microenvironments and investigating the mechanisms for the higher sensitivity of C/EBPβ KO mice to irradiation. In summary, these data suggested that C/EBPβ is required for initial expansion of hematopoietic stem/progenitor cells at the expense of HSCs under stressed conditions, while it is dispensable for maintenance of HSCs at steady state. We are now investigating the cellular and molecular targets of C/EBPβ in HSC regulation and would like to elucidate the cell-intrinsic and cell-extrinsic mechanisms in regulation of the homeostasis of hematopoietic system by C/EBPβ. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document