scholarly journals Identification, cloning, and characterization of a novel human T-cell- specific tyrosine kinase located at the hematopoietin complex on chromosome 5q

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1561-1572 ◽  
Author(s):  
S Gibson ◽  
B Leung ◽  
JA Squire ◽  
M Hill ◽  
N Arima ◽  
...  

Signal transduction through the T-cell receptor and cytokine receptors on the surface of T lymphocytes occurs largely via tyrosine phosphorylation of intracellular substrates. Because neither the T-cell receptor nor cytokine receptors contain intrinsic kinase domains, signal transduction is thought to occur via association of these receptors with intracellular protein tyrosine kinases. Although several members of the SRC and SYK families of tyrosine kinases have been implicated in signal transduction in lymphocytes, it seems likely that additional tyrosine kinases involved in signal transduction remain to be identified. To identify unique T-cell tyrosine kinases, we used polymerase chain reaction-based cloning with degenerate oligonucleotides directed at highly conserved motifs of tyrosine kinase domains. We have cloned the complete cDNA for a unique human tyrosine kinase that is expressed mainly in T lymphocytes (EMT) and natural killer (NK) cells. The cDNA of EMT predicts an open reading frame of 1866 bp encoding a protein with a predicted size of 72 Kd, which is in keeping with its size on Western blotting. A single 6.2-kb EMT mRNA and 72-Kd protein were detected in T lymphocytes and NK-like cell lines, but were not detected in other cell lineages. EMT contains both SH2 and SH3 domains, as do many other intracellular kinases. EMT does not contain the N-terminal myristylation site or the negative regulatory tyrosine phosphorylation site in its carboxyterminus that are found in the SRC family of tyrosine kinases. EMT is related to the B-cell progenitor kinase (BPK), which has recently been implicated in X-linked hypogammaglobulinemia, to the TECI mammalian kinase, which has been implicated in liver neoplasia, to the more widely expressed TECII mammalian kinase, and to the Drosophila melanogaster Dsrc28 kinase. Sequence comparison suggests that EMT is likely the human homologue of a recently identified murine interleukin-2 (IL-2)-inducible T cell kinase (ITK). However, unlike ITK, EMT message and protein levels do not vary markedly on stimulation of human IL-2-responsive T cells with IL-2. Taken together, it seems that EMT is a member of a new family of intracellular kinases that includes BPK, TECI, and TECII. EMT was localized to chromosome 5q31–32, a region that contains the genes for several growth factors and receptors as well as early activation genes, particularly those involved in the hematopoietic system. Furthermore, the 5q31–32 region is implicated in the genesis of the 5q- syndrome associated with myelodysplasia and development of leukemia.(ABSTRACT TRUNCATED AT 400 WORDS)

Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1561-1572 ◽  
Author(s):  
S Gibson ◽  
B Leung ◽  
JA Squire ◽  
M Hill ◽  
N Arima ◽  
...  

Abstract Signal transduction through the T-cell receptor and cytokine receptors on the surface of T lymphocytes occurs largely via tyrosine phosphorylation of intracellular substrates. Because neither the T-cell receptor nor cytokine receptors contain intrinsic kinase domains, signal transduction is thought to occur via association of these receptors with intracellular protein tyrosine kinases. Although several members of the SRC and SYK families of tyrosine kinases have been implicated in signal transduction in lymphocytes, it seems likely that additional tyrosine kinases involved in signal transduction remain to be identified. To identify unique T-cell tyrosine kinases, we used polymerase chain reaction-based cloning with degenerate oligonucleotides directed at highly conserved motifs of tyrosine kinase domains. We have cloned the complete cDNA for a unique human tyrosine kinase that is expressed mainly in T lymphocytes (EMT) and natural killer (NK) cells. The cDNA of EMT predicts an open reading frame of 1866 bp encoding a protein with a predicted size of 72 Kd, which is in keeping with its size on Western blotting. A single 6.2-kb EMT mRNA and 72-Kd protein were detected in T lymphocytes and NK-like cell lines, but were not detected in other cell lineages. EMT contains both SH2 and SH3 domains, as do many other intracellular kinases. EMT does not contain the N-terminal myristylation site or the negative regulatory tyrosine phosphorylation site in its carboxyterminus that are found in the SRC family of tyrosine kinases. EMT is related to the B-cell progenitor kinase (BPK), which has recently been implicated in X-linked hypogammaglobulinemia, to the TECI mammalian kinase, which has been implicated in liver neoplasia, to the more widely expressed TECII mammalian kinase, and to the Drosophila melanogaster Dsrc28 kinase. Sequence comparison suggests that EMT is likely the human homologue of a recently identified murine interleukin-2 (IL-2)-inducible T cell kinase (ITK). However, unlike ITK, EMT message and protein levels do not vary markedly on stimulation of human IL-2-responsive T cells with IL-2. Taken together, it seems that EMT is a member of a new family of intracellular kinases that includes BPK, TECI, and TECII. EMT was localized to chromosome 5q31–32, a region that contains the genes for several growth factors and receptors as well as early activation genes, particularly those involved in the hematopoietic system. Furthermore, the 5q31–32 region is implicated in the genesis of the 5q- syndrome associated with myelodysplasia and development of leukemia.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 184 (2) ◽  
pp. 365-376 ◽  
Author(s):  
V A Boussiotis ◽  
D L Barber ◽  
B J Lee ◽  
J G Gribben ◽  
G J Freeman ◽  
...  

When stimulated through their antigen receptor, without costimulation, T cells enter a state of antigen-specific unresponsiveness, termed anergy. B7-mediated costimulation, signaling via CD28, is sufficient to prevent the induction of anergy. Here we show that ligation of T cell receptor (TCR) by alloantigen alone, which results in anergy, activates tyrosine phosphorylation of TCR zeta and its association with fyn. In contrast, TCR ligation in the presence of B7 costimulation, which results in productive immunity, activates tyrosine phosphorylation of TCR zeta and CD3 chains, which associate with activated lck and zeta-associated protein (ZAP) 70. Under these conditions, CD28 associates with activated lck and TCR zeta. These data suggest that the induction of anergy is an active signaling process characterized by the association of TCR zeta and fyn. In addition, CD28-mediated costimulation may prevent the induction of anergy by facilitating the effective association of TCR zeta and CD3 epsilon with the critical protein tyrosine kinase lck, and the subsequent recruitment of ZAP-70. Strategies to inhibit or activate TCR-associated, specific protein tyrosine kinase-mediated pathways may provide a basis for drug development with potential applications in the fields of transplantation, autoimmunity, and tumor immunity.


1992 ◽  
Vol 12 (12) ◽  
pp. 5438-5446
Author(s):  
L K Timson Gauen ◽  
A N Kong ◽  
L E Samelson ◽  
A S Shaw

Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.


Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 760-767 ◽  
Author(s):  
Marcos Steinberg ◽  
Oumeya Adjali ◽  
Louise Swainson ◽  
Peggy Merida ◽  
Vincenzo Di Bartolo ◽  
...  

AbstractEngagement of the T-cell receptor (TCR) results in the activation of Lck/Fyn and ZAP-70/Syk tyrosine kinases. Lck-mediated tyrosine phosphorylation of signaling motifs (ITAMs) in the CD3-ζ subunits of the TCR is an initial step in the transduction of signaling cascades. However, ζ phosphorylation is also promoted by ZAP-70, as TCR-induced ζ phosphorylation is defective in ZAP-70–deficient T cells. We show that this defect is corrected by stable expression of ZAP-70, but not Syk, in primary and transformed T cells. Indeed, these proteins are differentially coupled to the TCR with a 5- to 10-fold higher association of ZAP-70 with ζ as compared to Syk. Low-level Syk-ζ binding is associated with significantly less Lck coupled to the TCR. Moreover, diminished coupling of Lck to ζ correlates with a poor phosphorylation of the positive regulatory tyr352 residue of Syk. Thus, recruitment of Lck into the TCR complex with subsequent ζ chain phosphorylation is promoted by ZAP-70 but not Syk. Importantly, the presence of ZAP-70 positively regulates the TCR-induced tyrosine phosphorylation of Syk. The interplay between Syk and ZAP-70 in thymocytes, certain T cells, and B-chronic lymphocytic leukemia cells, in which they are coexpressed, will therefore modulate the amplitude of antigen-mediated receptor signaling.


1992 ◽  
Vol 12 (12) ◽  
pp. 5438-5446 ◽  
Author(s):  
L K Timson Gauen ◽  
A N Kong ◽  
L E Samelson ◽  
A S Shaw

Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.


1998 ◽  
Vol 330 (3) ◽  
pp. 1123-1128 ◽  
Author(s):  
Spencer GIBSON ◽  
Ken TRUITT ◽  
Yiling LU ◽  
Ruth LAPUSHIN ◽  
Humera KHAN ◽  
...  

Optimal T cell activation requires crosslinking of the T cell receptor (TCR) concurrently with an accessory receptor, most efficiently CD28. Crosslinking of CD28 leads to increased interleukin 2 (IL2) production, inhibition of anergy and prevention of programmed cell death. Crosslinking of CD28 leads to rapid increases in tyrosine phosphorylation of specific intracellular substrates including CD28 itself. Since CD28 does not encode an intrinsic tyrosine kinase domain, CD28 must activate an intracellular tyrosine kinase(s). Indeed, crosslinking of CD28 increases the activity of the intracellular tyrosine kinases EMT/ITK and LCK. The phosphatidylinositol 3-kinase (PI3K) and GRB2 binding site in CD28 is dispensable for optimal IL2 production in Jurkat T cells. We demonstrate herein that murine Y170 (equivalent to human Y173) in CD28 is also dispensable for activation of the SRC family tyrosine kinase LCK and the TEC family tyrosine kinase EMT/ITK. In contrast, the distal three tyrosines in CD28 are required for optimal IL2 production as well as for optimal activation of the LCK and EMT/ITK tyrosine kinases. The distal three tyrosines of CD28, however, are not required for recruitment of PI3K to CD28. Furthermore, PI3K is recruited to CD28 in JCaM1 cells which lack LCK and in which EMT/ITK is not activated by ligation of CD28. Thus optimal activation of LCK or EMT/ITK is not obligatory for recruitment of PI3K to CD28 and thus is also not required for tyrosine phosphorylation of the YMNM motif in CD28. Taken together the data indicate that the distal three tyrosines in CD28 are integral to the activation of LCK and EMT/ITK and for subsequent IL2 production.


2004 ◽  
Vol 200 (5) ◽  
pp. 681-687 ◽  
Author(s):  
Nam-Hyuk Cho ◽  
Pinghui Feng ◽  
Sun-Hwa Lee ◽  
Bok-Soo Lee ◽  
Xiaozhen Liang ◽  
...  

T cells play a central role in orchestrating immunity against pathogens, particularly viruses. Thus, impairing T cell activation is an important strategy employed by viruses to escape host immune control. The tyrosine kinase–interacting protein (Tip) of the T lymphotropic Herpesvirus saimiri (HVS) is constitutively present in lipid rafts and interacts with cellular Lck tyrosine kinase and p80 endosomal protein. Here we demonstrate that, due to the sequestration of Lck by HVS Tip, T cell receptor (TCR) stimulation fails to activate ZAP70 tyrosine kinase and to initiate downstream signaling events. TCR ζ chains in Tip-expressing T cells were initially phosphorylated to recruit ZAP70 molecule upon TCR stimulation, but the recruited ZAP70 kinase was not subsequently phosphorylated, resulting in TCR complexes that were stably associated with inactive ZAP70 kinase. Consequently, Tip expression not only markedly inhibited TCR-mediated intracellular signal transduction but also blocked TCR engagement with major histocompatibility complexes on the antigen-presenting cells and immunological synapse formation. These results demonstrate that a lymphotropic herpesvirus has evolved a novel mechanism to deregulate T cell activation to disarm host immune surveillance. This process contributes to the establishment and maintenance of viral latency.


1996 ◽  
Vol 271 (17) ◽  
pp. 9976-9981 ◽  
Author(s):  
David B. Straus ◽  
Andrew C. Chan ◽  
Barbara Patai ◽  
Arthur Weiss

Sign in / Sign up

Export Citation Format

Share Document