scholarly journals Prostaglandin E2 potentiates platelet aggregation by priming protein kinase C

Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.

Blood ◽  
1993 ◽  
Vol 82 (9) ◽  
pp. 2704-2713 ◽  
Author(s):  
R Vezza ◽  
R Roberti ◽  
GG Nenci ◽  
P Gresele

Abstract Prostaglandin E2 (PGE2) is produced by activated platelets and by several other cells, including capillary endothelial cells. PGE2 exerts a dual effect on platelet aggregation: inhibitory, at high, supraphysiologic concentrations, and potentiating, at low concentrations. No information exists on the biochemical mechanisms through which PGE2 exerts its proaggregatory effect on human platelets. We have evaluated the activity of PGE2 on human platelets and have analyzed the second messenger pathways involved. PGE2 (5 to 500 nmol/L) significantly enhanced aggregation induced by subthreshold concentrations of U46619, thrombin, adenosine diphosphate (ADP), and phorbol 12-myristate 13-acetate (PMA) without simultaneously increasing calcium transients. At a high concentration (50 mumol/L), PGE2 inhibited both aggregation and calcium movements. PGE2 (5 to 500 nmol/L) significantly enhanced secretion of beta-thromboglobulin (beta TG) and adenosine triphosphate from U46619- and ADP-stimulated platelets, but it did not affect platelet shape change. PGE2 also increased the binding of radiolabeled fibrinogen to the platelet surface and increased the phosphorylation of the 47-kD protein in 32P- labeled platelets stimulated with subthreshold doses of U46619. Finally, the amplification of U46619-induced aggregation by PGE2 (500 nmol/L) was abolished by four different protein kinase C (PKC) inhibitors (calphostin C, staurosporine, H7, and TMB8). Our results suggest that PGE2 exerts its facilitating activity on agonist-induced platelet activation by priming PKC to activation by other agonists. PGE2 potentiates platelet activation at concentrations produced by activated platelets and may thus be of pathophysiologic relevance.


1991 ◽  
Vol 278 (2) ◽  
pp. 387-392 ◽  
Author(s):  
W A Khan ◽  
S W Mascarella ◽  
A H Lewin ◽  
C D Wyrick ◽  
F I Carroll ◽  
...  

Sphingosine is a naturally occurring long-chain amino diol with potent inhibitory activity against protein kinase C in vitro and in cell systems. The use of sphingosine as a pharmacological tool to probe the activity of protein kinase C has been hampered by its amphiphilicity, possible contamination of its commercial preparations, and the existence of other targets for its action. To address these problems, high-purity D-erythro-sphingosine was prepared and employed to develop an approach for the use of sphingosine as a pharmacological agent. The addition of synthetic D-erythro-sphingosine to intact human platelets resulted in quick uptake and preferential partitioning into the particulate fraction. It was rapidly metabolized by intact platelets, 60% being degraded within 1 min after addition. Sphingosine was found to be a potent inhibitor of gamma-thrombin-induced aggregation and secretion of washed human platelets. Multiple criteria indicated that this effect is probably mediated through the inhibition of protein kinase C: (1) sphingosine inhibited protein kinase C activity in intact platelets with a similar dose/response to its inhibition of platelet aggregation and secretion; (2) sphingosine inhibited phorbol binding to intact platelets under identical conditions and with a similar dose-dependence; (3) exogenous dioctanoylglycerol overcame sphingosine's inhibition of platelet activation. The effectiveness of sphingosine in inhibiting platelet activation was primarily determined by the ratio of sphingosine to total number of platelets. These data are discussed in relation to a general approach for the use of sphingosine and other parameters for determining biological activities of protein kinase C.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3891-3891
Author(s):  
Han Yue ◽  
Jean-Max Pasquet ◽  
Alan Nurden ◽  
Ruan Changgeng

Abstract Platelets are critical in normal haemostasis and arterial thrombosis. As a potent activator, thrombin activates human platelets by cleavage of the protease-activated receptors PARs, exposing new amino terminus which serve as tethered peptide ligands, binding to the receptors induce transmembrane signaling. Thrombin also binds to platelet glycoprotein Ib, whose redistribution within platelet was showed to be reversible upon to thrombin or to PAR1 and PAR4 peptides. In an attempt to understand the reversible expression of platelet GPIb and cytoskeleton reorganization during platelet activation, then determine functions of thrombin receptors in GPIb redistribution. we used peptide SFLLRNPNDKYEPF (PAR1-AP, trap) and AYPGKF (PAR4-AP) for stimulating platelet at different time points (0~60minute), detected the platelet surface GPIbα and P-selectin with flowcytometry, and compared the alteration of GPIbα, actin and myosin in cytoskeleton by western-blot, then analyzed the membrane cytoskeleton followed by GPIbα immunoprecipitation. As expected, a reversible interalisation of GPIbα was obtained by PAR1 or PAR4 activation, and a transient change of actin, myosin and GPIbα /myosin GPIbα /actin association were also found in this course. These transient internalisations were apparently blocked by Cytochalasin D (inhibitor of actin polymerisation) or BAPTA/AM (calcium chelator). At the same time, ApyraseVII had weak effect on GPIbα interalisation, although the return of GPIbα to platelet surface was accelerated by this low ATP/ADPase, which quickened GPIbα dissappearance in cytoskeleton and the dissociation of GPIb/myosin or GPIb/actin during PAR1-AP activation.100nM and 10μM wortmannin were used to inhibit phosphatidylinositol 3-kinase (PI3-K) and/or myosin light chain kinase (MLCK) in our experiments. In response to both PARs activation, GPIbα interalisation was partly inhibited by 100nM wortmannin but little change for 10μM wortmannin, and a delayed restoration of surface GPIbα was observed in the presence of 10μM wortmannin upon PAR1-AP activation.. Apart from the above reagents, Ro-31-2220 (inhibitor of protein kinase C) induced a decreased GPIbα centralisation in response to PAR1 activation, and blocked the pool of GPIbα inside platelet in the latter course of PAR4 activation (p<0.05 at 10,30 min). Globally, Our study confirmed that thrombin receptors are important for platelet signal transmission, Stimulation of either receptor is sufficient to trigger platelet activation and induce GP Ib redistribution, which is correlated with cytoskeleton reorganisation, depending on the actin polymerisation and calcium mobilisation and implicate both myosin and actin. Our results also suggested critical roles of ADP, PI3-K or protein kinase C (PKC) in the GPIb redistribution.


1987 ◽  
Author(s):  
S Krishnamurthi ◽  
V V Kakkar

We have compared the abilities of exogenously added U46619, the PG endoperoxide analogue and, sn-l-oleoyl 2-acetylglycerol (OAG) and sn-1,2-dioctanoylglycerol (diCg), the membrane-permeant DAG analogues, at restoring weak agonist-induced secretion in indomethacin (10μM)-treated platelets (I-PL) in the absence of endogenous PG/Tx synthesis. [14C]-5HT secretion from pre-loaded, washed human platelets was correlated with the levels of [Ca2+]i, using platelets loaded with quin 2. Concentrations of OAG (62-125μM) and diCg (15-30μM), which have previously been shown to be fully effective at activating protein kinase C, failed to significantly enhance [14C]-5HT secretion in combination with ADP (10μM), adrenaline (10μM) or PAF (0.2μM) although they potentiated platelet aggregation, when added 10-30 sec after these agonists to I-PL. eg ADP-0%, 30jiM diCg-9.8%, ADP+diCg-11.9%, 5HT release (p>O.05). In contrast, a low concentration of U46619 (0.2μM), that induced no aggregation, [14C]-5HT secretion or rise in [Ca2+]i levels on its own, was able to synergize strongly at potentiating secretion in combination with all three weak agonists examined, as well as in combination with OAG and diCg (U46619-0%, ADP+U46619-20.4%, U46619+30μM diC8-48% 5HT release) . The greater effectiveness of U46619 at potentiating secretion in combination with the weak agonists was not related to different degrees of [Ca2+]i mobilisation, as ADP and PAF-induced rise in [Ca2+]i occurred to a similar degree in the presence of U46619 and diCg. At a higher concentration of U46619 (0.6μM), which was maximally effective at inducing secretion and elevating [Ca2+]i levels on its own, addition of the weak agonists or OAG or diCg, along with U46619, resulted in a further enhancement of secretion which was independent of changes in [Ca2+]i levels. The results demonstrate that U46619 but not OAG or diCg, is able to fully restore weak agonist-induced secretion in indomethacin-treated platelets, suggesting that the actions of endogenously formed PG endoperoxides/TxA2 cannot be substituted by DAG and raised [Ca2+]i levels and, may be mediated via a mechanism additional to that involving these mediators.


2000 ◽  
Vol 347 (2) ◽  
pp. 561-569 ◽  
Author(s):  
Tsukasa OHMORI ◽  
Yutaka YATOMI ◽  
Naoki ASAZUMA ◽  
Kaneo SATOH ◽  
Yukio OZAKI

Proline-rich tyrosine kinase 2 (Pyk2) (also known as RAFTK, CAKβ or CADTK) has been identified as a member of the focal adhesion kinase (FAK) family of protein-tyrosine kinases and it has been suggested that the mode of Pyk2 activation is distinct from that of FAK. In the present study we investigated the mode of Pyk2 activation in human platelets. When platelets were stimulated with thrombin, Pyk2, as well as FAK, was markedly tyrosine-phosphorylated, in a manner mostly dependent on αIIbβ3 integrin-mediated aggregation. The residual Pyk2 tyrosine phosphorylation observed in the absence of platelet aggregation was completely abolished by pretreatment with BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,Nʹ,Nʹ-tetra-acetic acid acetoxymethyl ester]. The Pyk2 phosphorylation was inhibited by protein kinase C (PKC) inhibitors at concentrations that inhibited platelet aggregation. In contrast, direct activation of PKC with the active phorbol ester PMA induced the tyrosine phosphorylation of Pyk2 and FAK but only when platelets were fully aggregated with the exogenous addition of fibrinogen (the ligand for αIIbβ3 integrin). Furthermore, PMA-induced Pyk2 (and FAK) tyrosine phosphorylation was also observed when platelets adhered to immobilized fibrinogen. The activation of the von Willebrand factor (vWF)--glycoprotein Ib pathway with botrocetin together with vWF failed to induce Pyk2 (and FAK) tyrosine phosphorylation. Most Pyk2 and FAK was present in the cytosol and membrane skeleton fractions in unstimulated platelets. When platelets were stimulated with thrombin, both Pyk2 and FAK were translocated to the cytoskeleton in an aggregation-dependent manner. In immunoprecipitation studies, Pyk2, as well as FAK, seemed to associate with Shc through Grb2. With the use of glutathione S-transferase fusion proteins containing Shc-SH2, Grb2-SH2, and Grb2 N-terminal and C-terminal SH3 domains, it was implied that the proline-rich region of Pyk2 (and FAK) binds to the N-terminal SH3 domain of Grb2 and that the phosphotyrosine residue of Shc binds to the SH2 domain of Grb2. Although Pyk2 and FAK have been reported to be differentially regulated in many cell types, our results suggest that, in human platelets, the mode of Pyk2 activation is mostly similar to that of FAK, in terms of αIIbβ3 integrin-dependent and PKC-dependent tyrosine phosphorylation. Furthermore, Pyk2, as well as FAK, might have one or more important roles in post-aggregation tyrosine phosphorylation events, in association with the cytoskeleton and through interaction with adapter proteins including Grb2 and Shc.


2002 ◽  
Vol 96 (3) ◽  
pp. 651-658 ◽  
Author(s):  
Joen R. Sheu ◽  
George Hsiao ◽  
Hsiung N. Luk ◽  
Yi W. Chen ◽  
Ta L. Chen ◽  
...  

Background Midazolam is widely used as a sedative and anesthetic induction agent. The aim of this study was to systematically examine the inhibitory mechanisms of midazolam in platelet aggregation. Methods The inhibitory mechanisms of midazolam in platelet aggregation were explored by means of analysis of the platelet glycoprotein IIb-IIIa complex, phosphoinositide breakdown, intracellular Ca+2 mobilization, measurement of membrane fluidity, thromboxane B2 formation, and protein kinase C activity. Results In this study, midazolam dose-dependently (6-26 microm) inhibited platelet aggregation in human platelets stimulated by agonists. Midazolam also dose-dependently inhibited phosphoinositide breakdown and intracellular Ca+2 mobilization in human platelets stimulated by collagen. Midazolam (6-26 mum) significantly inhibited thromboxane A2 formation stimulated by collagen in human platelets. Moreover, midazolam (15 and 26 mum) dose-dependently decreased the fluorescence of platelet membranes tagged with diphenylhexatriene. Rapid phosphorylation of a platelet protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by collagen (2 microg/ml). This phosphorylation was markedly inhibited by midazolam (26 microm). Conclusions These results indicate that the antiplatelet activity of midazolam may be involved in the following pathways: the effects of midazolam may initially be caused by induction of conformational changes in platelet membrane, leading to a change in the activity of phospholipase C, and subsequent inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of both intracellular Ca+2 mobilization and phosphorylation of P47 protein.


1991 ◽  
Vol 278 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M Romano ◽  
M Molino ◽  
C Cerletti

The activation of protein kinase C by endotoxic lipid A was observed with both intact platelets and in a cell-free system [Romano & Hawiger (1990) J. Biol. Chem. 265, 1765-1770]. We have now studied the action of lipid A on intracellular Ca2+ concentration ([Ca2+]i). Lipid A induced a concentration-dependent rise in [Ca2+]i in human platelets loaded with fura-2, which reached a maximum at 37.1 +/- 3.8 s (tmax). Maximum [Ca2+]i levels, observed at 30 microM lipid A, were 432 +/- 60 nM. EGTA (2 mM) or NiCl2 (1 mM) each decreased the lipid A-dependent elevation of [Ca2+]i by 50-60% without significant modification of tmax, but shortening the time for 50% recovery (t50) from greater than 400 s to 113.1 +/- 29.1 s and 54 +/- 2.1 s, respectively. Quenching of the fura-2 signal was also observed in lipid A-stimulated platelets resuspended with MnCl2 (1 mM), suggesting that both mobilization and external influx of Ca2+ occur. Intracellular Ca2+ mobilization depended on release from Ins(1,4,5)P3-sensitive stores, since Ins(1,4,5)P3 accumulation was detected in lipid A-activated platelets. Staurosporine, an inhibitor of protein kinase C, blocked the [Ca2+]i rise generated by lipid A in platelets [concn. giving 50% inhibition (IC50) = 0.1 microM], prolonging the tmax. to 54.7 +/- 5.1 s, but decreasing the t50 to 157.5 +/- 31.8 s. Staurosporine also suppressed InsP3 accumulation (IC50 = 0.15 microM). These results suggest that platelet activation by lipid A involves an interaction between [Ca2+]i elevation and protein kinase C activation.


Sign in / Sign up

Export Citation Format

Share Document