scholarly journals Differential effect of 4-hydroperoxycyclophosphamide and antimyeloid monoclonal antibodies on T and natural killer cells during bone marrow purging

Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2345-2351 ◽  
Author(s):  
RK Zhong ◽  
AD Donnenberg ◽  
J Rubin ◽  
ED Ball

Autologous bone marrow (BM) transplantation after high dose therapy is widely used to treat acute leukemia, lymphoma, and selected solid tumors. In studies of BM purging with chemical agents, monoclonal antibodies (MoAbs), or other agents, the emphasis has been on the efficacy of tumor cell removal and sparing of hematopoietic progenitor cells. Two commonly used methods of BM purging for patients with acute myeloid leukemia have been the drug 4-hydroperoxycyclophosphamide (4- HC) and (MoAbs) directed to myeloid antigens such as CD14, CD15, and CD33. Although both methods of BM purging have potent activity against leukemia cells, 4-HC is also quite toxic to normal hematopoietic progenitor cells in the same concentrations that are used to deplete leukemia cells. To further characterize the cellular composition of BM after purging, we examined the effects of MoAbs plus complement and 4- HC on cells of the lymphoid lineage in the BM. 4-HC exerted a concentration-dependent cytotoxicity on clonogenic T lymphocytes, natural killer (NK) cells, and lymphokine (interleukin-2)-activated killer (LAK) cells, whereas the anti-CD14 and anti-CD15 MoAbs had little effect. At a concentration of 4-HC commonly used for BM purging (60 micrograms/mL), there were 4 to 5 logs of T-cell depletion and almost complete elimination of NK- and LAK-cell activity. In contrast, 4-HC at low concentrations (eg, 3 micrograms/mL) spared the majority of lymphoid cells suggesting that low concentration 4-HC combined with MoAb purging may be a desirable alternative to higher concentration 4- HC. These data indicate that purging with antimyeloid MoAbs, but not with 4-HC, spares the function of mature graft lymphocytes. Infusion of viable lymphocytes may be important for the transfer of immune memory against microbial and neoplastic antigens and may hasten immune reconstitution. In addition, mature graft lymphocytes may also be selectively activated and expanded in conjunction with interleukin-2 administration after BM transplantation.

Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2345-2351 ◽  
Author(s):  
RK Zhong ◽  
AD Donnenberg ◽  
J Rubin ◽  
ED Ball

Abstract Autologous bone marrow (BM) transplantation after high dose therapy is widely used to treat acute leukemia, lymphoma, and selected solid tumors. In studies of BM purging with chemical agents, monoclonal antibodies (MoAbs), or other agents, the emphasis has been on the efficacy of tumor cell removal and sparing of hematopoietic progenitor cells. Two commonly used methods of BM purging for patients with acute myeloid leukemia have been the drug 4-hydroperoxycyclophosphamide (4- HC) and (MoAbs) directed to myeloid antigens such as CD14, CD15, and CD33. Although both methods of BM purging have potent activity against leukemia cells, 4-HC is also quite toxic to normal hematopoietic progenitor cells in the same concentrations that are used to deplete leukemia cells. To further characterize the cellular composition of BM after purging, we examined the effects of MoAbs plus complement and 4- HC on cells of the lymphoid lineage in the BM. 4-HC exerted a concentration-dependent cytotoxicity on clonogenic T lymphocytes, natural killer (NK) cells, and lymphokine (interleukin-2)-activated killer (LAK) cells, whereas the anti-CD14 and anti-CD15 MoAbs had little effect. At a concentration of 4-HC commonly used for BM purging (60 micrograms/mL), there were 4 to 5 logs of T-cell depletion and almost complete elimination of NK- and LAK-cell activity. In contrast, 4-HC at low concentrations (eg, 3 micrograms/mL) spared the majority of lymphoid cells suggesting that low concentration 4-HC combined with MoAb purging may be a desirable alternative to higher concentration 4- HC. These data indicate that purging with antimyeloid MoAbs, but not with 4-HC, spares the function of mature graft lymphocytes. Infusion of viable lymphocytes may be important for the transfer of immune memory against microbial and neoplastic antigens and may hasten immune reconstitution. In addition, mature graft lymphocytes may also be selectively activated and expanded in conjunction with interleukin-2 administration after BM transplantation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2674-2674
Author(s):  
Seiji Fukuda ◽  
Hal E. Broxmeyer ◽  
Louis M. Pelus

Abstract The Flt3 receptor tyrosine kinase (Flt3) is expressed on primitive normal and transformed hematopoietic cells and Flt3 ligand (FL) facilitates hematopoietic stem cell mobilization in vivo. The CXC chemokine SDF-1α(CXCL12) attracts primitive hematopoietic cells to the bone marrow microenvironment while disruption of interaction between SDF-1α and its receptor CXCR4 within bone marrow may facilitate their mobilization to the peripheral circulation. We have previously shown that Flt3 ligand has chemokinetic activity and synergistically increases migration of CD34+ cells and Ba/F3-Flt3 cells to SDF-1α in short-term migration assays; this was associated with synergistic phosphorylation of MAPKp42/p44, CREB and Akt. Consistent with these findings, over-expression of constitutively active ITD (internal tandem duplication) Flt3 found in patients with AML dramatically increased migration to SDF-1α in Ba/F3 cells. Since FL can induce mobilization of hematopoietic stem cells, we examined if FL could antagonize SDF-1α/CXCR4 function and evaluated the effect of FL on in vivo homing of normal hematopoietic progenitor cells. FL synergistically increased migration of human RS4;11 acute leukemia cells, which co-express wild-type Flt3 and CXCR4, to SDF-1α in short term migration assay. Exogenous FL had no effect on SDF-1α induced migration of MV4-11 cells that express ITD-Flt3 and CXCR4 however migration to SDF-1α was partially blocked by treatment with the tyrosine kinase inhibitor AG1296, which inhibits Flt3 kinase activity. These results suggest that FL/Flt3 signaling positively regulates SDF-1α mediated chemotaxis of human acute leukemia cells in short-term assays in vitro, similar to that seen with normal CD34+ cells. In contrast to the enhancing effect of FL on SDF-1α, prolonged incubation of RS4;11 and THP-1 acute myeloid leukemia cells, which also express Flt3 and CXCR4, with FL for 48hr, significantly inhibited migration to SDF-1α, coincident with reduction of cell surface CXCR4. Similarly, prolonged exposure of CD34+ or Ba/F3-Flt3 cells to FL down-regulates CXCR4 expression, inhibits SDF-1α-mediated phosphorylation of MAPKp42/p44, CREB and Akt and impairs migration to SDF-1α. Despite reduction of surface CXCR4, CXCR4 mRNA and intracellular CXCR4 in Ba/F3-Flt3 cells were equivalent in cells incubated with or without FL, determined by RT-PCR and flow cytometry after cell permeabilization, suggesting that the reduction of cell surface CXCR4 expression is due to accelerated internalization of CXCR4. Furthermore, incubation of Ba/F3-Flt3 cells with FL for 48hr or over-expression of ITD-Flt3 in Ba/F3 cells significantly reduced adhesion to VCAM1. Consistent with the negative effect of FL on in vitro migration and adhesion to VCAM1, pretreatment of mouse bone marrow cells with 100ng/ml of FL decreased in vivo homing of CFU-GM to recipient marrow by 36±7% (P<0.01), indicating that FL can negatively regulate in vivo homing of hematopoietic progenitor cells. These findings indicate that short term effect of FL can provide stimulatory signals whereas prolonged exposure has negative effects on SDF-1α/CXCR4-mediated signaling and migration and suggest that the FL/Flt3 axis regulates hematopoietic cell trafficking in vivo. Manipulation of SDF-1α/CXCR4 and FL/Flt3 interaction could be clinically useful for hematopoietic cell transplantation and for treatment of hematopoietic malignancies in which both Flt3 and CXCR4 are expressed.


Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3538-3546 ◽  
Author(s):  
A Shibuya ◽  
K Nagayoshi ◽  
K Nakamura ◽  
H Nakauchi

We have established a cell culture system without stromal cells that allows the CD34+ hematopoietic progenitor cells (HPC) to differentiate into natural killer (NK) cells. CD34+Lin (CD3, CD16, CD56)-cells were purified using fluorescence-activated cell sorting from normal adult bone marrow (BM) and cultured for 28 days in medium supplemented with interleukin-2 (IL-2) and stem cell factor (SCF). NK (CD3-CD16-CD56+) cells were generated in a dose-dependent manner in response to SCF. NK cells originated from CD34+CD33+Lin- cells, but they were barely detectable in cultures of CD34+CD33-Lin- cells. However, on addition of IL-3, an induced differentiation of NK cells from CD34+CD33-Lin- cells was observed, although at a lower frequency. Supplementing of the cell cultures with SCF alone or both SCF and IL-3 for the first 7 days followed by IL-2 for the next 21 days is essential for production of NK cells from CD34+CD33+Lin- cells and from CD34+CD33-Lin- cells, respectively. These data provide direct evidence that NK cells arise from CD34+HPC and show the minimum lymphokine requirement for their differentiation.


1999 ◽  
Vol 8 (2) ◽  
pp. 189-198 ◽  
Author(s):  
Robert E. Pyatt ◽  
Laura L. Jenski ◽  
Ruth Allen ◽  
Ken Cornetta ◽  
Rafat Abonour ◽  
...  

Author(s):  
Giorgio Trinchieri ◽  
Marianne Murphy ◽  
Maria Cristina Cuturi ◽  
Ignacio Anegon ◽  
Bice Perussia

Sign in / Sign up

Export Citation Format

Share Document