scholarly journals Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells

Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3538-3546 ◽  
Author(s):  
A Shibuya ◽  
K Nagayoshi ◽  
K Nakamura ◽  
H Nakauchi

We have established a cell culture system without stromal cells that allows the CD34+ hematopoietic progenitor cells (HPC) to differentiate into natural killer (NK) cells. CD34+Lin (CD3, CD16, CD56)-cells were purified using fluorescence-activated cell sorting from normal adult bone marrow (BM) and cultured for 28 days in medium supplemented with interleukin-2 (IL-2) and stem cell factor (SCF). NK (CD3-CD16-CD56+) cells were generated in a dose-dependent manner in response to SCF. NK cells originated from CD34+CD33+Lin- cells, but they were barely detectable in cultures of CD34+CD33-Lin- cells. However, on addition of IL-3, an induced differentiation of NK cells from CD34+CD33-Lin- cells was observed, although at a lower frequency. Supplementing of the cell cultures with SCF alone or both SCF and IL-3 for the first 7 days followed by IL-2 for the next 21 days is essential for production of NK cells from CD34+CD33+Lin- cells and from CD34+CD33-Lin- cells, respectively. These data provide direct evidence that NK cells arise from CD34+HPC and show the minimum lymphokine requirement for their differentiation.

Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2345-2351 ◽  
Author(s):  
RK Zhong ◽  
AD Donnenberg ◽  
J Rubin ◽  
ED Ball

Abstract Autologous bone marrow (BM) transplantation after high dose therapy is widely used to treat acute leukemia, lymphoma, and selected solid tumors. In studies of BM purging with chemical agents, monoclonal antibodies (MoAbs), or other agents, the emphasis has been on the efficacy of tumor cell removal and sparing of hematopoietic progenitor cells. Two commonly used methods of BM purging for patients with acute myeloid leukemia have been the drug 4-hydroperoxycyclophosphamide (4- HC) and (MoAbs) directed to myeloid antigens such as CD14, CD15, and CD33. Although both methods of BM purging have potent activity against leukemia cells, 4-HC is also quite toxic to normal hematopoietic progenitor cells in the same concentrations that are used to deplete leukemia cells. To further characterize the cellular composition of BM after purging, we examined the effects of MoAbs plus complement and 4- HC on cells of the lymphoid lineage in the BM. 4-HC exerted a concentration-dependent cytotoxicity on clonogenic T lymphocytes, natural killer (NK) cells, and lymphokine (interleukin-2)-activated killer (LAK) cells, whereas the anti-CD14 and anti-CD15 MoAbs had little effect. At a concentration of 4-HC commonly used for BM purging (60 micrograms/mL), there were 4 to 5 logs of T-cell depletion and almost complete elimination of NK- and LAK-cell activity. In contrast, 4-HC at low concentrations (eg, 3 micrograms/mL) spared the majority of lymphoid cells suggesting that low concentration 4-HC combined with MoAb purging may be a desirable alternative to higher concentration 4- HC. These data indicate that purging with antimyeloid MoAbs, but not with 4-HC, spares the function of mature graft lymphocytes. Infusion of viable lymphocytes may be important for the transfer of immune memory against microbial and neoplastic antigens and may hasten immune reconstitution. In addition, mature graft lymphocytes may also be selectively activated and expanded in conjunction with interleukin-2 administration after BM transplantation.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1446-1454 ◽  
Author(s):  
N Katayama ◽  
M Nishikawa ◽  
F Komada ◽  
N Minami ◽  
S Shirakawa

Abstract A possible role for calmodulin in the colony growth of human hematopoietic progenitor cells was investigated using pharmacologic approaches. We obtained evidence for a dose-dependent inhibition of colony formation of myeloid progenitor cells (CFU-C) stimulated by interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) by three calmodulin antagonists, N- (6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), N- (4-aminobutyl)-5-chloro-2-naphthalenesulfonamide hydrochloride (W-13), and trifluoperazine. Chlorine-deficient analogs of W-7 and W-13, with a lower affinity for calmodulin, did not inhibit the growth of CFU-C colonies. W-7, W-13, and trifluoperazine inhibited the colony formation of immature erythroid progenitor cells (BFU-E) stimulated by IL-3 plus erythropoietin (Ep) or GM-CSF plus Ep, in a dose-dependent manner, while they did not affect the colony formation of mature erythroid progenitor cells (CFU-E) induced by Ep. W-7, W-13, and trifluoperazine also led to a dose-dependent inhibition of GM-CSF-induced colony formation of KG-1 cells. Calmodulin-dependent kinase activity derived from the KG-1 cells was inhibited by these three calmodulin antagonists in a dose-dependent manner. These data suggest that calmodulin may play an important regulatory role via a common process in the growth of hematopoietic progenitor cells stimulated by IL-3, GM-CSF, and G-CSF. Mechanisms related to the growth signal of Ep apparently are not associated with calmodulin-mediated systems.


Blood ◽  
1990 ◽  
Vol 75 (7) ◽  
pp. 1446-1454
Author(s):  
N Katayama ◽  
M Nishikawa ◽  
F Komada ◽  
N Minami ◽  
S Shirakawa

A possible role for calmodulin in the colony growth of human hematopoietic progenitor cells was investigated using pharmacologic approaches. We obtained evidence for a dose-dependent inhibition of colony formation of myeloid progenitor cells (CFU-C) stimulated by interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte CSF (G-CSF) by three calmodulin antagonists, N- (6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), N- (4-aminobutyl)-5-chloro-2-naphthalenesulfonamide hydrochloride (W-13), and trifluoperazine. Chlorine-deficient analogs of W-7 and W-13, with a lower affinity for calmodulin, did not inhibit the growth of CFU-C colonies. W-7, W-13, and trifluoperazine inhibited the colony formation of immature erythroid progenitor cells (BFU-E) stimulated by IL-3 plus erythropoietin (Ep) or GM-CSF plus Ep, in a dose-dependent manner, while they did not affect the colony formation of mature erythroid progenitor cells (CFU-E) induced by Ep. W-7, W-13, and trifluoperazine also led to a dose-dependent inhibition of GM-CSF-induced colony formation of KG-1 cells. Calmodulin-dependent kinase activity derived from the KG-1 cells was inhibited by these three calmodulin antagonists in a dose-dependent manner. These data suggest that calmodulin may play an important regulatory role via a common process in the growth of hematopoietic progenitor cells stimulated by IL-3, GM-CSF, and G-CSF. Mechanisms related to the growth signal of Ep apparently are not associated with calmodulin-mediated systems.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2345-2351 ◽  
Author(s):  
RK Zhong ◽  
AD Donnenberg ◽  
J Rubin ◽  
ED Ball

Autologous bone marrow (BM) transplantation after high dose therapy is widely used to treat acute leukemia, lymphoma, and selected solid tumors. In studies of BM purging with chemical agents, monoclonal antibodies (MoAbs), or other agents, the emphasis has been on the efficacy of tumor cell removal and sparing of hematopoietic progenitor cells. Two commonly used methods of BM purging for patients with acute myeloid leukemia have been the drug 4-hydroperoxycyclophosphamide (4- HC) and (MoAbs) directed to myeloid antigens such as CD14, CD15, and CD33. Although both methods of BM purging have potent activity against leukemia cells, 4-HC is also quite toxic to normal hematopoietic progenitor cells in the same concentrations that are used to deplete leukemia cells. To further characterize the cellular composition of BM after purging, we examined the effects of MoAbs plus complement and 4- HC on cells of the lymphoid lineage in the BM. 4-HC exerted a concentration-dependent cytotoxicity on clonogenic T lymphocytes, natural killer (NK) cells, and lymphokine (interleukin-2)-activated killer (LAK) cells, whereas the anti-CD14 and anti-CD15 MoAbs had little effect. At a concentration of 4-HC commonly used for BM purging (60 micrograms/mL), there were 4 to 5 logs of T-cell depletion and almost complete elimination of NK- and LAK-cell activity. In contrast, 4-HC at low concentrations (eg, 3 micrograms/mL) spared the majority of lymphoid cells suggesting that low concentration 4-HC combined with MoAb purging may be a desirable alternative to higher concentration 4- HC. These data indicate that purging with antimyeloid MoAbs, but not with 4-HC, spares the function of mature graft lymphocytes. Infusion of viable lymphocytes may be important for the transfer of immune memory against microbial and neoplastic antigens and may hasten immune reconstitution. In addition, mature graft lymphocytes may also be selectively activated and expanded in conjunction with interleukin-2 administration after BM transplantation.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3901-3909 ◽  
Author(s):  
M Cavazzana-Calvo ◽  
S Hacein-Bey ◽  
G de Saint Basile ◽  
C De Coene ◽  
F Selz ◽  
...  

Natural killer (NK) cells are characterized by their ability to mediate spontaneous cytotoxicity against susceptible tumor cells and infected cells. They differentiate from hematopoietic progenitor cells. Patients with X-linked severe combined immunodeficiency (SCID X1) carry mutations in the gamma c cytokine receptor gene that result in lack of both T and NK cells. To assess the role of interleukin-2 (IL-2), IL-7, and IL-15 cytokines, which share gamma c receptor subunit, in NK cell differentiation, we have studied NK cell differentiation from cord blood CD34 (+) cells in the presence of either stem cell factor (SCF), IL-2, and IL-7 or SCF and IL-15. The former cytokine combination efficiently induced CD34 (+) CD7 (+) cord blood cells to proliferate and mature into NK cells, while the latter was also able to induce NK cell differentiation from more immature CD34 (+) CD7 (-) cord blood cells. NK cells expressed CD56 and efficiently killed K562 target cells. These results show that IL-15 could play an important role in the maturation of NK cell from cord blood progenitors. Following retroviral-mediated gene transfer of gamma c into SCID X1 bone marrow progenitors, it was possible to reproduce a similar pattern of NK cell differentiation in two SCID-X1 patients with SCF + IL-2 + IL-7 and more efficiently in one of them with SCF + IL-15. These results strongly suggest that the gamma c chain transduces major signal(s) involved in NK cell differentiation from hematopoietic progenitor cells and that IL-15 interaction with gamma c is involved in this process at an earlier step than IL-2/IL-7 interactions of gamma c are. It also shows that gene transfer into hematopoietic progenitor cells could potentially restore NK cell differentiation in SCID X1 patients.


Author(s):  
Giorgio Trinchieri ◽  
Marianne Murphy ◽  
Maria Cristina Cuturi ◽  
Ignacio Anegon ◽  
Bice Perussia

1994 ◽  
Vol 180 (3) ◽  
pp. 1177-1182 ◽  
Author(s):  
H W Snoeck ◽  
D R Van Bockstaele ◽  
G Nys ◽  
M Lenjou ◽  
F Lardon ◽  
...  

To assess the effects of interferon gamma (IFN-gamma) on very primitive hematopoietic progenitor cells, CD34(2+)CD38- human bone marrow cells were isolated and cultured in a two-stage culture system, consisting of a primary liquid culture phase followed by a secondary semisolid colony assay. CD34(2+)CD38- cells needed at least the presence of interleukin 3 (IL-3) and kit ligand (KL) together with either IL-1, IL-6, or granulocyte-colony-stimulating factor (G-CSF) in the primary liquid phase in order to proliferate and differentiate into secondary colony-forming cells (CFC). Addition of IFN-gamma to the primary liquid cultures inhibited cell proliferation and generation of secondary CFC in a dose-dependent way. This was a direct effect since it was also seen in primary single cell cultures of CD34(2+)CD38- cells. The proliferation of more mature CD34+CD38+ cells, however, was not inhibited by IFN-gamma, demonstrating for the first time that IFN-gamma is a specific and direct hematopoietic stem cell inhibitor. IFN-gamma, moreover, preserves the viability of CD34(2+)CD38- cells in the absence of other cytokines. IFN-gamma could, therefore, play a role in the protection of the stem cell compartment from exhaustion in situations of hematopoietic stress and may be useful as stem cell protecting agent against chemotherapy for cancer.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3772-3772
Author(s):  
Rashmi Choudhary ◽  
Brian Freed ◽  
James DeGregori ◽  
Christopher C. Porter

Abstract Abstract 3772 Genetic modification of autologous hematopoietic stem cells (HSC) has the potential for effective treatment of a wide variety of inherited blood disorders. However, HSC gene therapy has shown limited clinical efficacy (with notable exceptions), in part because of the small proportion of engrafted genetically corrected HSCs. The use of drug-resistance genes to enable selection for transduced HSCs has been explored, but with limited success. Previous studies from our laboratory have indicated that murine HSC can be selected with 6-Thioguanine (6TG), a relatively non-toxic drug used in the treatment of leukemias, after knocking down the expression of hypoxanthine-guanine phosphoribosyltransferase (HPRT), an enzyme that metabolizes 6TG to its active state. We sought to determine if these findings can be translated to human hematopoietic cells. In the present study, we transduced human myeloid (Molm13, MV4-11) and lymphoid cell lines (Reh) with lentiviral vectors expressing shRNA constructs targeting HPRT or a non-targeted control sequence (Ctrl). Two of the most promising constructs directed against HPRT (491 and 50) were studied in more detail to determine which is most effective. Cells were selected in puromycin and cell lysates analyzed for HPRT gene expression. Reverse-transcription, real-time PCR (RT qPCR) and western blotting demonstrated that construct 491 was most efficient in knocking down HPRT in human hematopoietic cell lines compared to construct 50 (and Ctrl). To determine whether knockdown of HPRT provided resistance to 6TG, cells were cultured in the absence or presence of different doses of 6TG and live cell concentrations were determined. While Ctrl transduced cells decreased in a dose dependent manner after 72h of 6TG treatment, cells transduced with constructs 491 and 50 were relatively resistant to 6TG. IC50 values for construct 491 were significantly higher (114μM for Molm13 and 46μM for Reh cell lines) than construct 50 (1μM for Molm13 and 10μM for Reh) in comparison to control transduced cells (0.4μM for Molm13 and 3.5μM for Reh). We assessed cell death in human hematopoietic cell lines by annexin V staining after exposure to 6TG at 48 and 72h. As expected, control transduced cells died of apoptosis upon 6TG treatment, while 491 and 50 transduced cells were resistant. Furthermore, 491 transduced cells were more resistant to apoptosis than 50 transduced cells. Based on these results, construct 491 was used to transduce human CD34+ progenitor cells isolated from umbilical cord blood along with control shRNA. Transduction efficiency varied from 25–35% as determined by %GFP expression by flow cytometry. Sorted GFP+ cells showed reduced expression of HPRT in 491 transduced cells compared to controls, as measured by RT qPCR. Similar to the effects in cell lines, in vitro proliferation of control transduced CD34+ cells diminished in response to increasing 6TG concentrations. There was an increase in the percentage of GFP+ cells in 6TG treated 491 transduced cells compared to untreated controls in a dose dependent fashion, indicating a selective advantage conferred to 491 transduced cells in the presence of 6TG. Importantly, 491 transduced cells continued to proliferate despite treatment with 6TG. Like 6TG, cisplatin requires mismatch repair (MMR) for cytotoxicity. To determine if HPRT knockdown had off-target effects impairing MMR, transduced cells were also treated with cisplatin. Both control and 491 transduced cells stopped proliferating in the presence of cisplatin indicating that MMR remained intact. These data indicate that human hematopoietic progenitor cells can be selected in vitro by knock-down of HPRT and treatment with 6TG. Xenografts of Ctrl and 491 transduced human CD34+ cord blood cells have been generated and are being treated with 6TG to determine if human cells can be selected with 6TG in vivo. Disclosures: Off Label Use: Off label use of 6-thioguanine will be suggested.


Sign in / Sign up

Export Citation Format

Share Document