scholarly journals Inhibition of nitric oxide production is associated with enhanced weight loss, decreased survival, and impaired alloengraftment in mice undergoing graft-versus-host disease after bone marrow transplantation

Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2363-2373 ◽  
Author(s):  
WR Drobyski ◽  
CA Keever ◽  
GA Hanson ◽  
T McAuliffe ◽  
OW Griffith

Abstract The pathophysiologic role of nitric oxide (NO) in graft-versus-host disease (GVHD) was investigated in a murine bone marrow (BM) transplantation model where donor and recipient were H-2-matched but differed at multiple minor histocompatibility antigens. Host AKR/J (H- 2K) mice received lethal total body irradiation as pretransplant conditioning followed by transplantation of donor B10.BR (H-2K) BM cells with or without spleen cells as a source of GVH-reactive T cells. NO production, as assessed by serum nitrate and nitrite levels, was increased for up to 3 weeks posttransplant in animals undergoing both moderate and severe GVHD. Administration of NG-methyl-L-arginine (L- NMA), an inhibitor of nitric oxide synthase, to animals undergoing GVHD resulted in effective suppression of NO production when compared with saline-treated GVHD control animals. Suppression of NO production by L- NMA in GVHD animals was associated with enhanced weight loss early posttransplant and decreased overall survival. Histologic analysis of tissues from L-NMA-treated and saline-treated GVHD animals showed that early weight loss was not because of an exacerbation of GVHD, indicating that NO did not appear to play an immunosuppressive role in this experimental model. L-NMA-treated animals with enhanced weight loss were observed to have splenic atrophy, decreased extramedullary hematopoiesis, and a reduction in BM cellularity when compared with GVHD control mice that were weight-matched before transplant. Analysis of T-cell chimerism in the spleen showed that L-NMA treatment impaired donor T-cell repopulation. In vitro colony-forming unit (CFU) assays were performed to further assess the role of NO on BM progenitor cell growth. L-NMA added directly into culture had no effect on CFU- granulocyte/macrophage (CFU-GM) formation in normal murine BM. In contrast, total CFU-GM from L-NMA-treated animals were significantly reduced when compared with GVHD controls or BM control animals who did not develop GVHD. Collectively, these data indicate that inhibition of NO impairs hematopoietic reconstitution and support the premise that NO appears to play a novel role in the facilitation of alloengraftment posttransplant.

Blood ◽  
1994 ◽  
Vol 84 (7) ◽  
pp. 2363-2373 ◽  
Author(s):  
WR Drobyski ◽  
CA Keever ◽  
GA Hanson ◽  
T McAuliffe ◽  
OW Griffith

The pathophysiologic role of nitric oxide (NO) in graft-versus-host disease (GVHD) was investigated in a murine bone marrow (BM) transplantation model where donor and recipient were H-2-matched but differed at multiple minor histocompatibility antigens. Host AKR/J (H- 2K) mice received lethal total body irradiation as pretransplant conditioning followed by transplantation of donor B10.BR (H-2K) BM cells with or without spleen cells as a source of GVH-reactive T cells. NO production, as assessed by serum nitrate and nitrite levels, was increased for up to 3 weeks posttransplant in animals undergoing both moderate and severe GVHD. Administration of NG-methyl-L-arginine (L- NMA), an inhibitor of nitric oxide synthase, to animals undergoing GVHD resulted in effective suppression of NO production when compared with saline-treated GVHD control animals. Suppression of NO production by L- NMA in GVHD animals was associated with enhanced weight loss early posttransplant and decreased overall survival. Histologic analysis of tissues from L-NMA-treated and saline-treated GVHD animals showed that early weight loss was not because of an exacerbation of GVHD, indicating that NO did not appear to play an immunosuppressive role in this experimental model. L-NMA-treated animals with enhanced weight loss were observed to have splenic atrophy, decreased extramedullary hematopoiesis, and a reduction in BM cellularity when compared with GVHD control mice that were weight-matched before transplant. Analysis of T-cell chimerism in the spleen showed that L-NMA treatment impaired donor T-cell repopulation. In vitro colony-forming unit (CFU) assays were performed to further assess the role of NO on BM progenitor cell growth. L-NMA added directly into culture had no effect on CFU- granulocyte/macrophage (CFU-GM) formation in normal murine BM. In contrast, total CFU-GM from L-NMA-treated animals were significantly reduced when compared with GVHD controls or BM control animals who did not develop GVHD. Collectively, these data indicate that inhibition of NO impairs hematopoietic reconstitution and support the premise that NO appears to play a novel role in the facilitation of alloengraftment posttransplant.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 798-805 ◽  
Author(s):  
BR Blazar ◽  
DL Thiele ◽  
DA Vallera

Abstract Incubation of murine bone marrow and splenocytes with the dipeptide methyl ester, L-leucyl-L-leucine methyl ester (Leu-Leu-OMe), which results in the selective depletion of cytotoxic T cells and their precursors, natural killer cells, and monocytes, completely protected 30 recipients of fully allogeneic donor grafts from lethal graft-versus- host disease (GVHD). These results were comparable with those obtained in 30 recipients of anti-Thy 1.2 plus complement (C')-treated donor marrow. However, in contrast to antibody- and C'-dependent T-cell depletion, which reduces the level of donor cell engraftment in our model system, we did not observe such effects using Leu-Leu-OMe marrow pretreatment. As compared with the 24 H-2 typed recipients of anti-Thy 1.2 + C'-treated donor grafts, the 29 H-2 typed recipients of Leu-Leu- OMe-treated donor grafts had significantly (P less than .001) higher percentages of donor cells (mean = 93% v 74%) and significantly (P less than .001) lower percentages of host cells (mean = 6% v 15%) posttransplantation. In vitro limiting dilution assay (LDA) was performed to assess the comparative efficacy of cytolytic T-lymphocyte (CTL) precursor depletion by Leu-Leu-OMe or anti-Thy 1.2 + C' pretreatment. We observed greater levels of CTL precursor depletion in Leu-Leu-OMe treated as compared with anti-Thy 1.2 + C'-treated bone marrow plus spleen cells (BMS) obtained from nontransplanted mice. This suggests that the in vivo results cannot simply be attributed to a less efficacious functional inactivation of cytolytic T-cell precursors by Leu-Leu-OMe treatment as compared with anti-Thy 1.2 + C' treatment. Immunoreconstitution was similar in recipients of Leu-Leu-OMe-treated grafts and anti-Thy 1.2 + C'-treated grafts 100 days posttransplant. In our opinion, Leu-Leu-OMe marrow pretreatment deserves further investigation as a methodology to achieve GVHD prevention without significantly reducing the propensity toward host cell repopulation.


Blood ◽  
1990 ◽  
Vol 75 (3) ◽  
pp. 798-805
Author(s):  
BR Blazar ◽  
DL Thiele ◽  
DA Vallera

Incubation of murine bone marrow and splenocytes with the dipeptide methyl ester, L-leucyl-L-leucine methyl ester (Leu-Leu-OMe), which results in the selective depletion of cytotoxic T cells and their precursors, natural killer cells, and monocytes, completely protected 30 recipients of fully allogeneic donor grafts from lethal graft-versus- host disease (GVHD). These results were comparable with those obtained in 30 recipients of anti-Thy 1.2 plus complement (C')-treated donor marrow. However, in contrast to antibody- and C'-dependent T-cell depletion, which reduces the level of donor cell engraftment in our model system, we did not observe such effects using Leu-Leu-OMe marrow pretreatment. As compared with the 24 H-2 typed recipients of anti-Thy 1.2 + C'-treated donor grafts, the 29 H-2 typed recipients of Leu-Leu- OMe-treated donor grafts had significantly (P less than .001) higher percentages of donor cells (mean = 93% v 74%) and significantly (P less than .001) lower percentages of host cells (mean = 6% v 15%) posttransplantation. In vitro limiting dilution assay (LDA) was performed to assess the comparative efficacy of cytolytic T-lymphocyte (CTL) precursor depletion by Leu-Leu-OMe or anti-Thy 1.2 + C' pretreatment. We observed greater levels of CTL precursor depletion in Leu-Leu-OMe treated as compared with anti-Thy 1.2 + C'-treated bone marrow plus spleen cells (BMS) obtained from nontransplanted mice. This suggests that the in vivo results cannot simply be attributed to a less efficacious functional inactivation of cytolytic T-cell precursors by Leu-Leu-OMe treatment as compared with anti-Thy 1.2 + C' treatment. Immunoreconstitution was similar in recipients of Leu-Leu-OMe-treated grafts and anti-Thy 1.2 + C'-treated grafts 100 days posttransplant. In our opinion, Leu-Leu-OMe marrow pretreatment deserves further investigation as a methodology to achieve GVHD prevention without significantly reducing the propensity toward host cell repopulation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1928-1928
Author(s):  
Hui-Hui Ma ◽  
Jing Fu ◽  
Suzanne Lentzsch ◽  
Markus Y Mapara

Matrix metalloproteinases (MMPs) have been initially recognized for their role in degradation of extracellular matrix (ECM) and collagen remodeling. However, MMPs have been shown to play a crucial role in inflammation, tumor cell invasion, adaptive and innate immunity. Acute and chronic Graft versus Host Disease (GVHD) are characterized by distinctive histopathological features involving tissue infiltration with donor cells, tissue damage and remodeling. We therefore hypothesized that GVHD-associated organ damage may involve MMPs. We have now identified a novel immunomodulatory function for MMP-13 (alternatively called collagenase-3)and have uncovered a previously unknown role of MMP-13 in regulating GVHD.To address the function of MMP-13 in GVHD we first assesed the effect of MMP-13 on alloresponses in vitro. Using fully Major Histocompatibility Complex (MHC)-mismatched standard mixed lymphocyte reaction we demonstated that antigen presentig cells (APC) from B6.MMP-13-/-(H2b) mice led to signifcantly enhanced antigen-driven activation and proliferation of Carboxyfluorescein succinimidyl ester (CFSE)-labeled Balb/c responder splenocytes. Thus, MMP-13 deficiency in either splenocytes or bone marrow-derived dendritic cells used as stimulators resulted in enhanced proliferation, activation and IFN-gproduction in the allo-reactive lymphocyte responders. Similarly, exogenous MMP13 reduced proliferation of responder T cells as determined tested by CFSEdilution (CFSEloof CD4+T cells from 62.3% decreased to 40.6%, CFSEloof CD8+T cells from 74.1% down to 47.9%). We next assessed the impact of MMP-13 in vivousing fully MHC-mismatched rodent acute GVHD models. To study the role of host-derived MMP-13 we induced GVHD in B6.MMP-13-/-or B6.WT recipient mice following lethal TBI (1075 rad) using splenic T cells from Balb/cdonors. We observed signifcantly accelerated GVHD-related mortality (Median Survival Time 7 vs. 47 days post-transplant, p<0.05) in MMP-13-deficient recipients. Most importantly, donor T cells expanded more vigorously in the secondary lymphoid organs (Spleen and mesenteric lymphnoodes) of MMP13-/-compared to wildtype recipient mice (e.g. spleen: absolute donor CD4+Tcells 1.5x104± 7.3 x 103 (WT) vs. 5.83 x104±1.65 x104[MMP-13-/-] and CD8+5.5 x104± 3.8 x104(WT) vs 3.4 x105±1.4 x105[MMP-13-/-], p<0.01). Enhanced donor lymphocyte expansion was further confirmed by bioluminescence imaging. To further delineate the underlying mechanisms, we analyzed the effects of MMP-13deficiency and exogenous MMP-13 on maturation of mouse bone marrow derived-dendritic cells (BMDC) and macrophages in vitro. We noted decreased expression of inhibitory molecules PD-L1 and PD-1H on GM-CSF/LPS cultured BMDC. Similarly, bone marrow-derived MMP-13-/-macrophages also showed reduced PD-L1 and PD-1H expression upon LPS stimulation when compared to their WT counterparts. In summary we posit that recipient myeloid cell-derived MMP-13 mitigates GVHD and limits donor T cell expansion. Further studies are warranted to determine how MMP-13 suppresses expansion of donor T cells and impacts Graft-versus-Leukemia responses. Disclosures Lentzsch: Caelum Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Bayer: Consultancy; Janssen: Consultancy; Takeda: Consultancy; Abbvie: Consultancy; Clinical Care Options: Speakers Bureau; Sanofi: Consultancy, Research Funding; Multiple Myeloma Research Foundation: Honoraria; International Myeloma Foundation: Honoraria; Karyopharm: Research Funding; Columbia University: Patents & Royalties: 11-1F4mAb as anti-amyloid strategy; Proclara: Consultancy; BMS: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4433-4433
Author(s):  
Chuanfeng Xiong ◽  
Wei Huang ◽  
Xiaoli Nie ◽  
Ying Huang ◽  
Yiqun Jiao ◽  
...  

Allogeneic hematopoietic cell transplantation is a potentially curative treatment choice for a wide variety of hematological malignancies. However, graft-versus-host disease (GVHD), which is mediated by donor alloreactive T cells, limits the success of this procedure. Previous studies have demonstrated that several microRNAs (miRs) modulate graft-versus-host disease. miR-191 was previously reported to be able to support T cell survival after TCR stimulation. We hypothesize that miR191 regulates T cell response during GVHD. To test this hypothesis, we first studied miR-191 expression in alloreactive T cells. The result demonstrated that miR-191 was up-regulated in donor T cells isolated from murine GVHD recipients, suggesting that miR-191 may play a role in GVHD induction. We further studied the role of miR-191in GVHD using miR-191 deficient T cells (KO). Lethally irradiated (8.5 Gy) BALB/c mice were injected intravenously with 1×107 T cell-depleted bone marrow (TCDBM) cells along with 1×106 purified T cells from wild-type (WT) or KO mice, which are in C57BL/6 background. Interestingly, all recipients in the WT group died within 35 days after transplantation, while only one out of ten animals died in the KO group during an observation period of 56 days. Body weights and clinical scores were also improved in KO T cell recipients when compared with the WT controls. Similar results were also observed in a second GVHD model (C57BL/6→C3H/HeJ). To understand the mechanism by which miR-191 KO T cells have decreased ability to mediate GVHD, we first measured the ability of KO T cells to respond to alloantigens in vitro in a mixed lymphocytes reaction assay. Dramatically decreased alloresponse was observed with KO T cells as compared with WT T cells. Similarly, decreased clonal expansion was observed in KO T cells in vivo upon challenge with alloantigens as measured by bioluminescent imaging (Figure 1A). These results were further supported by data from a co-transfer experiment, in which equal numbers of WT and KO T cells were transplanted into the same GVHD recipient. At day7 after transplantation, KO T cells showed significantly reduced expansion in the spleen and liver compared with WT T cells. Reduced alloresponses mediated by KO T cells may not due to decreased proliferative capability directly as an in vivo carboxyfluorescein succinimidyl ester (CFSE) assay showed a comparable cell division between WT and KO T cells upon challenge with alloantigens. Rather, increased cell death is responsible for decreased alloresponse observed in KO T cells because dramatically increased number of dead cells was observed in KO group compared with WT group upon response to alloantigens in vitro and vivo. To determine the genes that are regulated by miR-191, we did a screening based on the prediction. Humans and mice share more than 100 predicted targets for miR-191. We chose top 20 of these targets for RT-qPCR screening. The result demonstrated that Taf5 was a target gene of miR-191. Expression of TAF5 protein was down-regulated in activated KO T cells when compared with the WT T cells. Finally, we investigated whether miR-191 KO T cells preserve graft-versus-leukemia effects. 1×106 T cells from WT or KO mice were transplanted into lethally irradiated BALB/c mice along with 1×107 TCDBM cells and 1×105 host-type BCL-1 cells. While all recipients that received only TCDBM and tumor cells developed lethal leukemia/lymphoma, none of WT and KO T cells recipients developed tumor. In conclusion, our findings reveal a critical role of miR-191 during GVHD process and demonstrate that miR-191 is a novel therapeutic target for GVHD. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (6) ◽  
pp. 2440-2445 ◽  
Author(s):  
Cornelius Schmaltz ◽  
Onder Alpdogan ◽  
Stephanie J. Muriglan ◽  
Barry J. Kappel ◽  
Jimmy A. Rotolo ◽  
...  

Previous studies in murine bone marrow transplantation (BMT) models using neutralizing anti-tumor necrosis factor (TNF) antibodies or TNF receptor (TNFR)–deficient recipients have demonstrated that TNF can be involved in both graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL). TNF in these GVHD and GVL models was thought to be primarily produced by activated monocytes and macrophages, and the role of T cell–derived TNF was not determined. We used TNF−/− mice to study the specific role of TNF produced by donor T cells in a well-established parent-into-F1 hybrid model (C57BL/6J→C3FeB6F1/J). Recipients of TNF−/− T cells developed significantly less morbidity and mortality from GVHD than recipients of wild-type (wt) T cells. Histology of GVHD target organs revealed significantly less damage in thymus, small bowel, and large bowel, but not in liver or skin tissues from recipients of TNF−/− T cells. Recipients of TNF−/−T cells which were also inoculated with leukemia cells at the time of BMT showed increased mortality from leukemia when compared with recipients of wt cells. We found that TNF−/− T cells do not have intrinsic defects in vitro or in vivo in proliferation, IFN-γ production, or alloactivation. We could not detect TNF in the serum of our transplant recipients, suggesting that T cells contribute to GVHD and GVL via membrane-bound or locally released TNF.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4237
Author(s):  
Abdellatif Bouazzaoui ◽  
Ahmed A. H. Abdellatif ◽  
Faisal A. Al-Allaf ◽  
Neda M. Bogari ◽  
Mohiuddin M. Taher ◽  
...  

Systemic steroids are used to treat acute graft-versus-host disease (aGVHD) caused by allogenic bone marrow transplantation (allo-BMT); however, their prolonged use results in complications. Hence, new agents for treating aGVHD are required. Recently, a new compound A (CpdA), with anti-inflammatory activity and reduced side effects compared to steroids, has been identified. Here, we aimed to determine whether CpdA can improve the outcome of aGVHD when administered after transplantation in a mouse model (C57BL/6 in B6D2F1). After conditioning with 9Gy total body irradiation, mice were infused with bone marrow (BM) cells and splenocytes from either syngeneic (B6D2F1) or allogeneic (C57BL/6) donors. The animals were subsequently treated (3 days/week) with 7.5 mg/kg CpdA from day +15 to day +28; the controls received 0.9% NaCl. Thereafter, the incidence and severity of aGVHD in aGVHD target organs were analyzed. Survival and clinical scores did not differ significantly; however, CpdA-treated animals showed high cell infiltration in the target organs. In bulk mixed lymphocyte reactions, CpdA treatment reduced the cell proliferation and expression of inflammatory cytokines and chemokines compared to controls, whereas levels of TNF, IL-23, chemokines, and chemokine receptors increased. CpdA significantly reduced proliferation in vitro but increased T cell infiltration in target organs.


Blood ◽  
1992 ◽  
Vol 80 (10) ◽  
pp. 2661-2667
Author(s):  
J Mysliwietz ◽  
S Thierfelder

Abstract A hamster antimouse CD3 monoclonal antibody (MoAb) opened the way to experimental studies on the suppression of allograft rejection and cytokine-related morbidity after treatment with antibodies modulating the CD3/T-cell receptor complex (CD3/TCR). Because earlier attempts to suppress graft-versus-host disease (GVHD) in patients by in vitro treatment of donor marrow with anti-CD3 MoAb had remained inconclusive, we used a rat IgG2b antimouse CD3 MoAb (17A2) with fewer side effects to analyze suppression of GVHD in the mouse model. Detailed phenotyping of blood, spleen, and lymphnode T cells after the injection of 400 micrograms 17A2 in C57BL/6 mice showed 60% CD3 downmodulation and 50% T- cell depletion for spleen cells. Injection of these spleen cells, together with bone marrow cells, in fully mismatched preirradiated CBA mice delayed GVHD by only 6 days. Ex vivo treatment of donor cells with 17A2 was not effective. In contrast, conditioning of marrow recipients with a single injection of 17A2 delayed 50% GVHD mortality by 100 days and prevented GVHD altogether after prolonged treatment, with survivors showing complete chimerism and specific transplantation tolerance. This difference in antibody effect contrasts with earlier experiences with nonmodulating but more strongly T-cell-depleting MoAbs of the same isotype, which prevent GVHD no matter whether applied in vitro or injected into donor or recipient mice. Our data indicate that CD3/TCR reexpression in marrow recipients with no circulating 17A2 is the reason why ex vivo donor cell treatment with anti-CD3 MoAb is comparatively ineffective. Our data, which allow separate evaluation of cell-depleting and cell-modulating antibody activity, help to explain previous clinical failure to suppress GVHD and provide evidence in favor of conditioning the marrow recipient with anti-CD3 MoAb as a therapeutic alternative.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3693-3701 ◽  
Author(s):  
Ypke V. J. M. van Oosterhout ◽  
Liesbeth van Emst ◽  
Anton V. M. B. Schattenberg ◽  
Wil J. M. Tax ◽  
Dirk J. Ruiter ◽  
...  

Abstract This study evaluated the anti-graft versus host disease (GVHD) potential of a combination of immunotoxins (IT), consisting of a murine CD3 (SPV-T3a) and CD7 (WT1) monoclonal antibody both conjugated to deglycosylated ricin A. In vitro efficacy data demonstrated that these IT act synergistically, resulting in an approximately 99% elimination of activated T cells at 10−8 mol/L (about 1.8 μg/mL). Because most natural killer (NK) cells are CD7+, NK activity was inhibited as well. Apart from the killing mediated by ricin A, binding of SPV-T3a by itself impaired in vitro cytotoxic T-cell cytotoxicity. Flow cytometric analysis revealed that this was due to both modulation of the CD3/T-cell receptor complex and activation-induced cell death. These results warranted evaluation of the IT combination in patients with refractory acute GVHD in an ongoing pilot study. So far, 4 patients have been treated with 3 to 4 infusions of 2 or 4 mg/m2 IT combination, administered intravenously at 48-hour intervals. The T1/2 was 6.7 hours, and peak serum levels ranged from 258 to 3210 ng/mL. Drug-associated side effects were restricted to limited edema, fever, and a modest rise of creatine kinase levels. One patient developed low-titer antibodies against ricin A. Infusions were associated with an immediate drop of circulating T cells, followed by a more gradual but continuing elimination of T/NK cells. One patient mounted an extensive CD8 T-cell response directly after treatment, not accompanied with aggravating GVHD. Two patients showed nearly complete remission of GVHD, despite unresponsiveness to the extensive pretreatment. These findings justify further investigation of the IT combination for treatment of diseases mediated by T cells.


2001 ◽  
Vol 19 (4) ◽  
pp. 1152-1159 ◽  
Author(s):  
Robert J. Soiffer ◽  
Edie Weller ◽  
Edwin P. Alyea ◽  
Peter Mauch ◽  
Iain L. Webb ◽  
...  

PURPOSE: The role of donor marrow T-cell depletion (TCD) in preventing graft-versus-host disease (GVHD) after transplantation of unrelated allogeneic marrow remains undefined. Because different TCD methodologies differ in the degree and specificity with which T cells are removed, it is likely that transplant outcomes would depend on which technique is used. Herein, we report results in the first 48 recipients of unrelated marrow using CD6+ TCD as the sole form of GVHD prophylaxis. PATIENTS AND METHODS: Median age of patients was 46 years (20 to 58 years). Donors were matched at A/B HLA loci. Ablation consisted of cyclophosphamide and fractionated total-body irradiation (TBI; 14 Gy). To facilitate engraftment, patients also received 7.5 Gy (22 points) or 4.5 Gy (26 points) of total lymphoid irradiation (TLI) before admission. No additional immune suppressive prophylaxis was administered. Granulocyte colony-stimulating factor was administered daily from day +1 to engraftment. RESULTS: All 48 patients demonstrated neutrophil engraftment. An absolute neutrophil count of 500 × 106/L was achieved at a median of 12 days (range, 9 to 23 days). There were no cases of late graft failure. The number of CD34+ cells infused/kg was associated with speed of platelet and neutrophil recovery. The dose of TLI did not influence engraftment. Grades 2-4 acute GVHD occurred in 42% of patients (95% confidence interval [CI], 0.28 to 0.57). Mortality at day 100 was 19%. There have been only five relapses. Estimated 2-year survival was 44% (95% CI, 0.28 to 0.59) for the entire group, 58% for patients less than 50 years of age. In multivariable analysis, age less than 50 years (P = .002), cytomegalovirus seronegative status (P = .04), and early disease status at bone marrow transplant (P = .05) were associated with superior survival. CONCLUSION: CD6+ TCD does not impede engraftment of unrelated bone marrow after low-dose TLI, cyclophosphamide, and TBI. CD6+ TCD as the sole form of GVHD prophylaxis results in an incidence of GVHD that compares favorably with many adult studies of unrelated transplantation using unmanipulated marrow and immune-suppressive medications, especially in light of the median age of our patients (46 years). Although event-free survival in patients less than 50 years of age is very encouraging, older patients experience frequent transplantation-related complications despite TCD.


Sign in / Sign up

Export Citation Format

Share Document