scholarly journals Leukocyte integrin CD11b promoter directs expression in lymphocytes and granulocytes in transgenic mice

Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 1017-1024 ◽  
Author(s):  
A Back ◽  
K East ◽  
D Hickstein

The human leukocyte integrin subunit CD11b is expressed predominantly on myelomonocytic cells. To identify CD11b promoter sequences important for myelomonocytic gene expression and to assess the utility of the CD11b promoter for expressing heterologous genes in vivo, we generated transgenic mice with a human CD4 reporter gene driven by CD11b promoter constructs composed of 1.5, 0.3, or 0.1 kb of DNA sequence 5′ to the transcription start site. Using flow cytometry to detect the human CD4 reporter on murine leukocytes, two of three 1.5-kb CD11b promoter founder lines showed surface expression of the human CD4 transgene in granulocytes and lymphocytes. The transgene expression observed in lymphocytes was inappropriate relative to the normal pattern of CD11b expression. Of the eight 0.3-kb or 0.1-kb founder lines, only one 0.1- kb founder line showed transgene expression. The overall pattern of transgene expression among the 11 founder lines does not parallel expression of the endogenous CD11b gene. These studies indicate that additional CD11b regulatory elements will be required to express a reporter gene in vivo in a lineage-specific pattern that mimics the endogenous CD11b gene.

Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

Abstract CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


1992 ◽  
Vol 12 (9) ◽  
pp. 3978-3990
Author(s):  
B Liu ◽  
G D Hammer ◽  
M Rubinstein ◽  
M Mortrud ◽  
M J Low

The proopiomelanocortin (POMC) gene is highly expressed in adult mouse pituitary anterior lobe corticotrophs and intermediate lobe melanotrophs. To identify the DNA elements important for this tissue-specific expression, we analyzed a series of POMC reporter genes in transgenic mice. A DNA fragment containing rat POMC 5'-flanking sequences from -323 to -34 recapitulated both basal pituitary cell-specific and hormonally stimulated expression in adult mice when fused to a heterologous thymidine kinase promoter. Developmental onset of the reporter gene expression lagged by 1 day but otherwise closely paralleled the normal ontogeny of murine POMC gene expression, including corticotroph activation at embryonic day 14.5 (E14.5) followed by melanotroph activation at E15.5 to E16.5. AtT20 corticotroph nuclear protein extracts interacted with three specific regions of the functional POMC promoter in DNase I protection assays. The positions of these protected sites were -107 to -160 (site 1), -182 to -218 (site 2), and -249 to -281 (site 3). Individual deletions of these footprinted sites did not alter transgene expression; however, the simultaneous deletion of sites 2 and 3 prevented transgene expression in both corticotrophs and melanotrophs. Electrophoretic mobility shift and Southwestern (DNA-protein) assays demonstrated that multiple AtT20 nuclear proteins bound to these footprinted sites. We conclude that the sequences between -323 and -34 of the rat POMC gene promoter are both necessary and sufficient for correct spatial, temporal, and hormonally regulated expression in the pituitary gland. Our data suggest that the three footprinted sites within the promoter are functionally interchangeable and act in combination with promoter elements between -114 and -34. The inability of any reporter gene construction to dissociate basal and hormonally stimulated expression suggests that these DNA elements are involved in both of these two characteristics of POMC gene expression in vivo.


1992 ◽  
Vol 12 (9) ◽  
pp. 3978-3990 ◽  
Author(s):  
B Liu ◽  
G D Hammer ◽  
M Rubinstein ◽  
M Mortrud ◽  
M J Low

The proopiomelanocortin (POMC) gene is highly expressed in adult mouse pituitary anterior lobe corticotrophs and intermediate lobe melanotrophs. To identify the DNA elements important for this tissue-specific expression, we analyzed a series of POMC reporter genes in transgenic mice. A DNA fragment containing rat POMC 5'-flanking sequences from -323 to -34 recapitulated both basal pituitary cell-specific and hormonally stimulated expression in adult mice when fused to a heterologous thymidine kinase promoter. Developmental onset of the reporter gene expression lagged by 1 day but otherwise closely paralleled the normal ontogeny of murine POMC gene expression, including corticotroph activation at embryonic day 14.5 (E14.5) followed by melanotroph activation at E15.5 to E16.5. AtT20 corticotroph nuclear protein extracts interacted with three specific regions of the functional POMC promoter in DNase I protection assays. The positions of these protected sites were -107 to -160 (site 1), -182 to -218 (site 2), and -249 to -281 (site 3). Individual deletions of these footprinted sites did not alter transgene expression; however, the simultaneous deletion of sites 2 and 3 prevented transgene expression in both corticotrophs and melanotrophs. Electrophoretic mobility shift and Southwestern (DNA-protein) assays demonstrated that multiple AtT20 nuclear proteins bound to these footprinted sites. We conclude that the sequences between -323 and -34 of the rat POMC gene promoter are both necessary and sufficient for correct spatial, temporal, and hormonally regulated expression in the pituitary gland. Our data suggest that the three footprinted sites within the promoter are functionally interchangeable and act in combination with promoter elements between -114 and -34. The inability of any reporter gene construction to dissociate basal and hormonally stimulated expression suggests that these DNA elements are involved in both of these two characteristics of POMC gene expression in vivo.


Blood ◽  
1995 ◽  
Vol 85 (2) ◽  
pp. 319-329 ◽  
Author(s):  
S Dziennis ◽  
RA Van Etten ◽  
HL Pahl ◽  
DL Morris ◽  
TL Rothstein ◽  
...  

CD11b is the alpha chain of the Mac-1 integrin and is preferentially expressed in myeloid cells (neutrophils, monocytes, and macrophages). We have previously shown that the CD11b promoter directs cell-type- specific expression in myeloid lines using transient transfection assays. To confirm that these promoter sequences contain the proper regulatory elements for correct myeloid expression of CD11b in vivo, we have used the -1.7-kb human CD11b promoter to direct reporter gene expression in transgenic mice. Stable founder lines were generated with two different reporter genes, a Thy 1.1 surface marker and the Escherichia coli lacZ (beta-galactosidase) gene. Analysis of founders generated with each reporter demonstrated that the CD11b promoter was capable of driving high levels of transgene expression in murine macrophages for the lifetime of the animals. Similar to the endogenous gene, transgene expression was preferentially found in mature monocytes, macrophages, and neutrophils and not in myeloid precursors. These experiments indicate that the -1.7 CD11b promoter contains the regulatory elements sufficient for high-level macrophage expression. This promoter should be useful for targeting heterologous gene expression to mature myeloid cells.


2004 ◽  
Vol 286 (6) ◽  
pp. F1171-F1177 ◽  
Author(s):  
Wenzheng Zhang ◽  
Xuefeng Xia ◽  
Lei Zou ◽  
Xiangyang Xu ◽  
Gene D. LeSage ◽  
...  

Because little is known about the molecular basis of transcriptional regulation of the murine H+-K+-ATPase α2 (HKα2) gene or other genes whose expression is restricted in part to the collecting duct, especially in vivo, we developed transgenic mice carrying an insertional HKα2 promoter-reporter gene construct. In these mice, the region −7,264/+253 of the HKα2 5′-flanking region controls expression of the reporter gene enhanced green fluorescent protein (EGFP). Patterns of HKα2/EGFP transgene expression were examined by fluorescence microscopy and immunoblotting. Of 10 major organs examined, EGFP immunoreactivity was detected abundantly in the kidney, and to a far lesser extent, in the brain and lung. Within the kidney, EGFP fluorescence was detected exclusively in the collecting ducts of transgenic mice and colocalized with the cellular distribution of both endogenous HKα2 and aquaporin-2, consistent with the known expression pattern of endogenous HKα2 in principal cells. Surprisingly, no transgene expression was evident by immunoblotting or fluorescence microscopy in the distal colon, the site of the highest endogenous HKα2 expression. Although previous studies of steady-state mRNA levels suggested differences in HKα2 gene regulation in the kidney and colon, our results provide the first direct evidence of differential transcriptional control of the HKα2 gene in these organs and suggest that regions outside the 5′-flanking region or other regulatory factors play a role in HKα2 expression in the distal colon.


1989 ◽  
Vol 9 (10) ◽  
pp. 4581-4584
Author(s):  
J Magram ◽  
K Niederreither ◽  
F Costantini

To examine the role of human beta-globin enhancers in tissue-specific and developmental regulation, a hybrid beta-globin-simian virus 40 gene was analyzed in transgenic mice. A beta-globin DNA fragment containing two previously defined enhancers stimulated transcription from the simian virus 40 promoter in a tissue- and stage-specific pattern similar to that of the normal beta-globin gene. These results help to define the functions of beta-globin regulatory elements and suggest an approach for targeted expression of heterologous genes in erythroid cells in vivo.


1989 ◽  
Vol 9 (10) ◽  
pp. 4581-4584 ◽  
Author(s):  
J Magram ◽  
K Niederreither ◽  
F Costantini

To examine the role of human beta-globin enhancers in tissue-specific and developmental regulation, a hybrid beta-globin-simian virus 40 gene was analyzed in transgenic mice. A beta-globin DNA fragment containing two previously defined enhancers stimulated transcription from the simian virus 40 promoter in a tissue- and stage-specific pattern similar to that of the normal beta-globin gene. These results help to define the functions of beta-globin regulatory elements and suggest an approach for targeted expression of heterologous genes in erythroid cells in vivo.


1997 ◽  
pp. 701-708 ◽  
Author(s):  
A Blackburn ◽  
RA Dressendorfer ◽  
WF Blum ◽  
M Erhard ◽  
G Brem ◽  
...  

To study interactions between insulin-like growth factor-II (IGF-II) and growth hormone (GH) in vivo, we crossed hemizygous transgenic mice carrying phosphoenolpyruvate carboxykinase (PEPCK)-IGF-II fusion genes with hemizygous PEPCK-bovine GH (bGH) transgenic mice. Offspring harbouring both transgenes (IB), the IGF-II transgene (I) or the bGH transgene (B), and non-transgenic littermates (C) were obtained. Blood samples were taken before (end of week 12) and after (end of week 14) the mice had received a diet high in protein and low in carbohydrates to stimulate PEPCK promoter-controlled transgene expression. Mean serum GH concentrations of both B and IB mice corresponded to 900 ng/ml and increased more than twofold (P < 0.001) after 1 week of the high-protein diet. GH concentrations in controls and I mice were less than 20 ng/ml. Serum IGF-II concentrations in I and IB mice were three-to fourfold higher than those in C and B mice. Whereas IGF-II concentrations were not changed by the high-protein diet in the last two groups, serum IGF-II increased significantly in I (P < 0.001) and IB mice (P < 0.05). This increase was significantly (P < 0.05) less pronounced in IB than in C and I mice. Circulating IGF-I concentrations were about twofold (P < 0.001) higher in B and IB than in C and I mice, and showed a tendency to be lower in I than in C and in IB than in B mice when animals were maintained on the standard diet. The high-protein diet did not change circulating IGF-I concentrations in controls and B mice, but resulted in a significant reduction of serum IGF-I concentrations in I (P < 0.05) and IB mice (P < 0.001). Consequently, after PEPCK-IGF-II transgene expression was stimulated, serum IGF-I concentrations were significantly (P < 0.05) lower in I than in C and in IB than in B mice. Serum IGF-binding protein (IGFBP)-2 concentrations were significantly (P < 0.05) higher in I mice than in all other groups when mice were maintained on the standard diet, with a tendency to reduced IGFBP-2 concentrations in B mice. After the high-protein diet, serum IGFBP-2 concentrations did not change in C and I mice, but increased by two- to threefold in B and IB mice (P < 0.001). Serum IGFBP-3 concentrations tended to be greater in B and IB than in C and I mice, but these differences were mostly not significant. IGFBP-4 concentrations were significantly (P < 0.001) increased by GH overproduction in B and IB mice. Our data suggest that the reduction in circulating IGF-I concentrations by increased IGF-II is most probably due to the limited serum IGF binding capacity and the short half-life of free IGFs, rather than to a reduction in GH-dependent IGF-I production. Effects of GH overproduction on serum IGFBP-2 concentrations depend on dietary factors and may be both inhibitory and stimulatory.


2001 ◽  
Vol 21 (1) ◽  
pp. 298-309 ◽  
Author(s):  
Yong-Qing Feng ◽  
Matthew C. Lorincz ◽  
Steve Fiering ◽  
John M. Greally ◽  
Eric E. Bouhassira

ABSTRACT We have inserted two expression cassettes at tagged reference chromosomal sites by using recombinase-mediated cassette exchange in mammalian cells. The three sites of integration displayed either stable or silencing position effects that were dominant over the different enhancers present in the cassettes. These position effects were strongly dependent on the orientation of the construct within the locus, with one orientation being permissive for expression and the other being nonpermissive. Orientation-specific silencing, which was observed at two of the three site tested, was associated with hypermethylation but not with changes in chromatin structure, as judged by DNase I hypersensitivity assays. Using CRE recombinase, we were able to switch in vivo the orientation of the transgenes from the permissive to the nonpermissive orientation and vice versa. Switching from the permissive to the nonpermissive orientation led to silencing, but switching from the nonpermissive to the permissive orientation did not lead to reactivation of the transgene. Instead, transgene expression occurred dynamically by transcriptional oscillations, with 10 to 20% of the cells expressing at any given time. This result suggested that the cassette had been imprinted (epigenetically tagged) while it was in the nonpermissive orientation. Methylation analysis revealed that the methylation state of the inverted cassettes resembled that of silenced cassettes except that the enhancer had selectively lost some of its methylation. Sorting of the expressing and nonexpressing cell populations provided evidence that the transcriptional oscillations of the epigenetically tagged cassette are associated with changes in the methylation status of regulatory elements in the transgene. This suggests that transgene methylation is more dynamic than was previously assumed.


Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 1072-1074 ◽  
Author(s):  
Sandra Ziegler ◽  
Kurt Bürki ◽  
Radek C. Skoda

Abstract Thrombopoietin receptor c-mpl is expressed on hematopoietic progenitors and cells of the megakaryocytic lineage. The c-mpl promoter may, therefore, be useful for directing the expression of transgenes. We tested whether a 2-kb genomic DNA fragment comprising the putative c-mpl regulatory elements and most of the 5′-untranslated region of mouse c-mpl is able to direct the expression of a reporter gene to hematopoietic cells in transgenic mice. As a reporter gene we used the human placental alkaline phosphatase (PLAP). In adult transgenic mice, PLAP expression was specifically detected in megakaryocytes and platelets. Embryos showed PLAP reporter gene expression already in the yolk sac at embryonic day 6.5 (E6.5) and in blood islands at E7.5. At E9.5, expression was found in blood vessels of the yolk sac and the embryo proper, followed by high levels of expression in the fetal liver at E11.5. Expression in E6.5 yolk sac is compatible with a function of c-mpl and its ligand, thrombopoietin, in the earliest stages of embryonic hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document