scholarly journals Identification of two mutations (Arg611Cys and Arg611His) in the A1 loop of von Willebrand factor (vWF) responsible for type 2 von Willebrand disease with decreased platelet-dependent function of vWF [see comments]

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1010-1018 ◽  
Author(s):  
L Hilbert ◽  
C Gaucher ◽  
C Mazurier

Abstract We report the identification of von Willebrand factor (vWF) gene mutations within exon 28 occurring in three unrelated families with an infrequent form of type 2 von Willebrand disease (vWD). A C-->T transition and a G-->A transition, both at the codon for arginine 611 of the mature vWF subunit, were found. They result in either a cysteine or an histidine substitution, respectively. Patients were found to be heterozygous for these substitutions and the vWD was transmitted dominantly. These substitutions have been reproduced by in vitro mutagenesis of full-length cDNA of vWF and transiently expressed in Cos- 7 cells. The corresponding recombinant vWFs (rvWF) exhibited decreased expression and a significant decrease in the high molecular weight multimeric forms. In addition, ristocetin- and botrocetin-induced binding of mutated rvWFs to platelets were markedly decreased as compared with that for the wild-type rvWFs. Thus, the structural and functional characterization of both mutated rvWFs confirmed that the two nucleotide substitutions identified at position 611 of the mature subunit of vWF are real mutations. Although they are located in the A1 loop containing most of the type 2B mutations inducing increased affinity of vWF for platelet glycoprotein Ib, they are responsible for abnormal vWF with decreased platelet-dependent function.

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1010-1018 ◽  
Author(s):  
L Hilbert ◽  
C Gaucher ◽  
C Mazurier

We report the identification of von Willebrand factor (vWF) gene mutations within exon 28 occurring in three unrelated families with an infrequent form of type 2 von Willebrand disease (vWD). A C-->T transition and a G-->A transition, both at the codon for arginine 611 of the mature vWF subunit, were found. They result in either a cysteine or an histidine substitution, respectively. Patients were found to be heterozygous for these substitutions and the vWD was transmitted dominantly. These substitutions have been reproduced by in vitro mutagenesis of full-length cDNA of vWF and transiently expressed in Cos- 7 cells. The corresponding recombinant vWFs (rvWF) exhibited decreased expression and a significant decrease in the high molecular weight multimeric forms. In addition, ristocetin- and botrocetin-induced binding of mutated rvWFs to platelets were markedly decreased as compared with that for the wild-type rvWFs. Thus, the structural and functional characterization of both mutated rvWFs confirmed that the two nucleotide substitutions identified at position 611 of the mature subunit of vWF are real mutations. Although they are located in the A1 loop containing most of the type 2B mutations inducing increased affinity of vWF for platelet glycoprotein Ib, they are responsible for abnormal vWF with decreased platelet-dependent function.


Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 952-959 ◽  
Author(s):  
Anne-Sophie Ribba ◽  
Lysiane Hilbert ◽  
Jean-Maurice Lavergne ◽  
Edith Fressinaud ◽  
Catherine Boyer-Neumann ◽  
...  

Abstract The study identified 10 patients from 6 families with prolonged bleeding time, decreased von Willebrand factor (vWF) ristocetin cofactor activity (RCoF) to vWF:Ag (antigen) ratio, and reduced ristocetin-induced platelet agglutination as well as ristocetin- or botrocetin-induced binding of plasma vWF to platelet glycoprotein Ib (GpIb). In addition, all patients showed a decrease of intermediate-molecular-weight (intermediate-MW) and high-molecular-weight (HMW) multimers of vWF. In the heterozygous state, a cysteine-to-threonine (C → T) transversion was detected at nucleotide 4193 of the VWF gene of all patients and lead to the arginine (R)522C substitution in the A1 loop of vWF mature subunit (R1315C in the preprovWF). By in vitro mutagenesis of full-length complementary DNA (cDNA) of vWF and transient expression in COS-7 cells, the mutated C552 recombinant vWF (C552rvWF) was found to exhibit decreased expression, abnormal folding, and lack of intermediate-MW and HMW multimers. In addition, direct binding of botrocetin to C552rvWF, as well as ristocetin- and botrocetin-induced binding of C552rvWF to GpIb, was markedly decreased. Although being localized in an area of the A1 loop of vWF where most of the type 2B mutations that induce a gain-of-function have been identified, the R552C mutation induces a 2A-like phenotype with a decrease of intermediate-MW and HMW multimers as well as a loss-of-function of vWF in the presence of either ristocetin or botrocetin.


1995 ◽  
Vol 73 (04) ◽  
pp. 610-616 ◽  
Author(s):  
Christine Gaucher ◽  
Christophe de Romeuf ◽  
Michéle Rauïs-Morret ◽  
Francis Corazza ◽  
Pierre Fondu ◽  
...  

SummaryType 2A of von Willebrand disease refers to qualitative variants with decreased platelet dependent function that is associated with the absence of high molecular weight forms of von Willebrand factor (vWF) multimers. Type 2B refers to qualitative variants with increased affinity for platelet glycoprotein lb. In this report we describe the study of a patient who has been previously diagnosed as having subtype 2A von Willebrand disease (vWD), because she had no heightened ristocetin-induced platelet aggregation, no large and intermediate molecular weight von Willebrand factor (vWF) multimers in plasma, and no increase in plasma vWF capacity to bind to normal platelets in the presence of low ristocetin concentrations. The DNA sequencing of the 3’ part of the exon 28 of the vWF gene where most of the subtype 2A mutations have already been identified, did not detect any nucleotide change. At variance, a G to A transition changing the encoded amino acid residue from Val 553 to Met in mature vWF, was found in the 5’ part of this exon. This mutation which has already been found in several unrelated families with 2B vWD and the increased binding of the patient platelet vWF on normal platelets in the presence of low ristocetin concentrations provide evidence for subtype 2B vWD. This study thus illustrates the importance of the molecular characterization of patients in the correct diagnosis and classification of type 2 vWD.


1992 ◽  
Vol 68 (04) ◽  
pp. 464-469 ◽  
Author(s):  
Y Fujimura ◽  
S Miyata ◽  
S Nishida ◽  
S Miura ◽  
M Kaneda ◽  
...  

SummaryWe have recently shown the existence of two distinct forms of botrocetin (one-chain and two-chain), and demonstrated that the two-chain species is approximately 30 times more active than the one-chain in promoting von Willebrand factor (vWF) binding to platelet glycoprotein (GP) Ib. The N-terminal sequence of two-chain botrocetin is highly homologous to sea-urchin Echinoidin and other Ca2+-dependent lectins (Fujimura et al., Biochemistry 1991; 30: 1957–64).Present data indicate that purified two-chain botrocetin binds to vWF from plasmas of patients with type IIA or IIB von Willebrand disease and its interaction is indistinguishable from that with vWF from normal individuals. However, an “activated complex” formed between botrocetin and IIB vWF expresses an enhanced biological activity for binding to GP Ib whereas the complex with IIA vWF has a decreased binding activity. Among several anti-vWF monoclonal antibodies (MoAbs) which inhibit ristocetin-induced platelet aggregation and/or vWF binding to GPIb, only two MoAbs (NMC-4 and RFF-VIII RAG:1) abolished direct binding between purified botrocetin and vWF. This suggests that they recognize an epitope(s) on the vWF molecule in close proximity to the botrocetin binding site.


2020 ◽  
Vol 432 (2) ◽  
pp. 305-323 ◽  
Author(s):  
Alexander Tischer ◽  
Maria A. Brehm ◽  
Venkata R. Machha ◽  
Laurie Moon-Tasson ◽  
Linda M. Benson ◽  
...  

2021 ◽  
Vol 47 (02) ◽  
pp. 192-200
Author(s):  
James S. O'Donnell

AbstractThe biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 985-988 ◽  
Author(s):  
Y Fujimura ◽  
LZ Holland ◽  
ZM Ruggeri ◽  
TS Zimmerman

Abstract Botrocetin, a component of Bothrops jararaca venom, induces von Willebrand factor (vWF)-dependent platelet agglutination and has been proposed as an alternative agent to ristocetin for evaluating vWF function. However, important differences between the vWF-platelet interactions induced by these two agents have suggested that different regions of vWF and the platelet may be involved in the interactions induced by the two agonists. We have recently demonstrated that binding of vWF to the platelet glycoprotein (GP) Ib receptor, either induced by ristocetin or as occurs spontaneously with asialo-vWF or vWF from IIb von Willebrand disease, is mediated by a domain residing on a 52/48- kilodalton (kD) tryptic fragment of vWF. This fragment extends from amino acid residue Val (449) to Lys (728). We have now found that this 52/48-kD fragment blocks botrocetin-induced binding of vWF to platelets and completely inhibits botrocetin-induced platelet agglutination. These results provide evidence that the vWF domain-mediating, botrocetin-induced platelet agglutination lies within the region delimited by this fragment and is therefore close to or identical with that which mediates ristocetin-induced binding and spontaneous binding of vWF to platelet GPIb. Anti-GPIb monoclonal antibodies also blocked agglutination, which showed that botrocetin, like ristocetin, induces binding of vWF to the GPIb receptor.


Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3553-3561 ◽  
Author(s):  
O Christophe ◽  
AS Ribba ◽  
D Baruch ◽  
B Obert ◽  
C Rouault ◽  
...  

Abstract We compared the properties of plasma von Willebrand factor (vWF) from normal individuals and from two patients with type IIA (Glu875Lys) and type IIB (duplication of Met 540) von Willebrand disease (vWD) with the corresponding fully multimerized recombinant proteins. We included cryosupernatant from normal human plasma and type IIA plasma (Cys509Arg). Functions of vWF were analyzed by binding assays to platelets in the presence of ristocetin or botrocetin. Parameters of binding (number of binding sites per vWF subunit, and dissociation constant Kd) were quantitatively estimated from the binding isotherms of 125I-botrocetin or glycocalicin to vWF, independently of the size of the multimers. We found that ristocetin- or botrocetin-induced binding to platelets was correlated in all cases with the size of vWF multimers. In the absence of inducer, only type IIB rvWF Met-Met540 spontaneously bound to platelets. No significant difference of binding of purified botrocetin to vWF was found between normal and patients' plasma, or between wild-type rvWF (rvWF-WT) and rvWF-Lys875. In contrast, affinity of botrocetin for type IIB rvWF Met-Met540 was decreased. Botrocetin-induced binding of glycocalicin to vWF from all plasma and cryosupernatant was similar. Compared with rvWF-WT, binding of glycocalicin to rvWF-Lys875 was normal. In contrast, the affinity for type IIB rvWF Met-Met540 was 10-fold greater. Thus, our data suggest that, in the patients tested, the abnormal IIA phenotype results from the lack of large-sized multimers and is independent of the point mutations. In contrast, the type IIB mutation is directly involved by providing a conformation to the vWF subunits that allows the high molecular weight multimers to spontaneously interact with platelet glycoprotein Ib.


Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 2048-2055 ◽  
Author(s):  
PA Kroner ◽  
ML Kluessendorf ◽  
JP Scott ◽  
RR Montgomery

Abstract von Willebrand disease (vWD) variant type IIB is an inherited bleeding disorder resulting from the spontaneous binding of defective von Willebrand factor (vWF) to platelets in vivo. To identify the molecular basis for type IIB vWD, we used reverse transcription and the polymerase chain reaction to examine the nucleotide sequence of the platelet glycoprotein (GP) Ib-binding domain encoded by the vWF messenger RNA in an affected family, and in an unrelated affected individual. We identified two different missense mutations linked with expression of type IIB vWD. These mutations, which lead to Pro574---- Leu and Val553----Met substitutions, respectively, were each introduced into the full-length vWF expression vector pvW198, and both wild-type (wt) and mutant vWF were transiently expressed in COS-7 cells. Binding assays showed that both mutant proteins showed significant non- ristocetin-dependent spontaneous binding to platelets, and that complete binding was induced by low concentrations of ristocetin that failed to induce platelet binding by wt vWF. The vWF/platelet interaction was inhibited by the anti-vWF monoclonal antibody (MoAb) AvW3, and the anti-GPIb MoAb AP1, which both block vWF binding to platelets. These results show that the identified missense mutations are the likely basis for the expression of type IIB vWD in these affected individuals.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2711-2711
Author(s):  
Reinhard Schneppenheim ◽  
Olivier Marggraf ◽  
Heike Eckert ◽  
Tobias Obser ◽  
Florian Oyen ◽  
...  

Abstract Background: Multimer analysis of von Willebrand factor (VWF) is a most important technique to classify patients with von Willebrand disease (VWD) type 2. Besides “classical” multimer patterns a “smeary” appearance of individual VWF oligomers is increasingly observed and has previously been regarded as a pre-analytical artifact. Objective: To phenotypically and genotypically assess the molecular background of “smeary” VWF multimers. Patients and methods: Samples of 8 VWD patients were analyzed in our reference lab (UB) for further classification and molecular testing. Multimer profiles were assessed by intermediate resolution gels. VWF:CB and VWF:GpIb binding were used as functional assays. VWF gene mutation analysis was performed in all index cases (IC). The causal relationship between genotype and phenotype was studied by analyzing recombinant mutants in comparison to wildtype VWF. Results: In all IC the phenotype correlated with particular mutations in the VWF D3 domain (G1172D), the A1 domain (R1315C, R1374S, R1374C, R1399C), the D4 domain (C2257R), the C1 domain (R2464C) and in the region close to the CK domain (C2671Y), respectively. The multimer patterns of recombinant mutant VWF was of a “smeary” appearance and closely resembled those of mutant plasma VWF. Mutations in the A1 domain additionally correlated with severe GpIb binding deficiency. Conclusions: Our data suggest a molecular cause of the “smeary” multimer structure rather than pre-analytical artifacts. Most of the mutations identified involved cysteine residues suggesting an influence on the VWF secondary structure which is determined by intra- and intermolecular disulfide bonds. This could explain the peculiar multimer appearance. The functional deficits, however, seem to depend on the location of the mutations with a significant impact on GpIb binding of mutants in the A1 domain.


Sign in / Sign up

Export Citation Format

Share Document