scholarly journals Role of accessory cells in cytokine production by T cells in chronic B- cell lymphocytic leukemia

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1115-1123 ◽  
Author(s):  
T Decker ◽  
T Flohr ◽  
P Trautmann ◽  
MJ Aman ◽  
W Holter ◽  
...  

Abstract We investigated the production of cytokines by highly purified T helper cells from B-cell chronic lymphocytic leukemia (B-CLL) patients stimulated by different activation pathways, and we studied the influence of various accessory cell populations on the pattern of the secretion of cytokines, including interleukin (IL)-2, IL-4, interferon- gamma (IFN-gamma), and IL-10. Neither a qualitative nor a quantitative difference in cytokine production and proliferative capacity was observed in CLL-derived purified T cells compared with normal individuals, when T cells were stimulated by different pathways, including CD3, CD2, and costimulation with CD28. Addition of autologous accessory cells (aAC), however, dramatically influenced the cytokine pattern of normal versus B-CLL-derived T cells. CLL cells as aAC caused a marked increase of IL-2, whereas IFN-gamma was only slightly induced and IL-4 was not influenced. In contrast, in normal individuals addition of aAC, which predominantly consisted of monocytes, resulted in a significant increase of IFN-gamma and a reduction of IL-4 secretion. IL-2 production was inhibited by higher concentrations of aAC. The increased stimulation of IL-2 production by CLL cells was not specific to the leukemic cell population, as purified B cells from normal individuals had the same effect. On the other hand, purified monocytes from CLL patients and controls both induced IFN-gamma production and inhibited IL-4 secretion. After antigen-specific stimulation with tetanus toxoid, cytokine secretion was influenced by the type of aAC in a similar pattern. We conclude that T helper cells derived from patients with B-CLL are intrinsically normal and that the predominance of B cells as accessory cells in CLL significantly alters the immune function of T helper cells in vitro.

Blood ◽  
1995 ◽  
Vol 86 (3) ◽  
pp. 1115-1123
Author(s):  
T Decker ◽  
T Flohr ◽  
P Trautmann ◽  
MJ Aman ◽  
W Holter ◽  
...  

We investigated the production of cytokines by highly purified T helper cells from B-cell chronic lymphocytic leukemia (B-CLL) patients stimulated by different activation pathways, and we studied the influence of various accessory cell populations on the pattern of the secretion of cytokines, including interleukin (IL)-2, IL-4, interferon- gamma (IFN-gamma), and IL-10. Neither a qualitative nor a quantitative difference in cytokine production and proliferative capacity was observed in CLL-derived purified T cells compared with normal individuals, when T cells were stimulated by different pathways, including CD3, CD2, and costimulation with CD28. Addition of autologous accessory cells (aAC), however, dramatically influenced the cytokine pattern of normal versus B-CLL-derived T cells. CLL cells as aAC caused a marked increase of IL-2, whereas IFN-gamma was only slightly induced and IL-4 was not influenced. In contrast, in normal individuals addition of aAC, which predominantly consisted of monocytes, resulted in a significant increase of IFN-gamma and a reduction of IL-4 secretion. IL-2 production was inhibited by higher concentrations of aAC. The increased stimulation of IL-2 production by CLL cells was not specific to the leukemic cell population, as purified B cells from normal individuals had the same effect. On the other hand, purified monocytes from CLL patients and controls both induced IFN-gamma production and inhibited IL-4 secretion. After antigen-specific stimulation with tetanus toxoid, cytokine secretion was influenced by the type of aAC in a similar pattern. We conclude that T helper cells derived from patients with B-CLL are intrinsically normal and that the predominance of B cells as accessory cells in CLL significantly alters the immune function of T helper cells in vitro.


1983 ◽  
Vol 158 (3) ◽  
pp. 811-821 ◽  
Author(s):  
M McNamara ◽  
H Kohler

In this study T helper cells that recognize idiotypes as carriers for a hapten-specific B cell response were analyzed under limiting dilution conditions. T helper cells, induced by phosphorylcholine-hemocyanin (PC-Hy) priming, recognize trinitrophenylated TEPC-15 and MOPC-167 (TNP-T15, TNP-167) equally well. Limiting dilution analysis indicates identical frequencies of helper cells for TNP-T15 and TNP-167. Double immunization protocols using TNP-T15 and TNP-167 fail to demonstrate additive effects. Inhibition of carrier recognition in vitro using free hapten, PC, and unconjugated T15 or M167 indicates identical specificities of helper cells for T15 and M167. Collectively, these results provide strong evidence that PC-Hy priming induces only one population of idiotype-recognizing helper cells that are unable to distinguish between the T15 and the M167 idiotopes. The helper cell induction circuit was further analyzed. PC-Hy priming induces T15/167-specific helper T cells in X-linked immune defect-expressing F1 mice. This indicates that a B cell response to PC is not required to induce idiotype-recognizing T cells. Adoptive cotransfer of B cells from PC-Hy-primed mice together with normal T cells fails to induce idiotype-recognizing T cells. These results indicate the existence of a T helper1-T helper2 induction loop. In this scheme, the T helper1 cell carries T15-like receptors and the T helper2 cells, anti-T15-like receptors. Monoclonal antiidiotypic antibodies specific for T15 also induce a T15/167-recognizing T helper cell population. This finding demonstrates that idiotope-specific priming induces non-idiotype-specific T cells. Evidently, the idiotypic T cell network is based on a different selection of idiotope determinants than the selection of the B cell idiotype network.


2021 ◽  
Vol 6 (55) ◽  
pp. eabb6852
Author(s):  
Young Min Son ◽  
In Su Cheon ◽  
Yue Wu ◽  
Chaofan Li ◽  
Zheng Wang ◽  
...  

Much remains unknown about the roles of CD4+ T helper cells in shaping localized memory B cell and CD8+ T cell immunity in the mucosal tissues. Here, we report that lung T helper cells provide local assistance for the optimal development of tissue-resident memory B and CD8+ T cells after the resolution of primary influenza virus infection. We have identified a population of T cells in the lung that exhibit characteristics of both follicular T helper and TRM cells, and we have termed these cells as resident helper T (TRH) cells. Optimal TRH cell formation was dependent on transcription factors involved in T follicular helper and resident memory T cell development including BCL6 and Bhlhe40. We show that TRH cells deliver local help to CD8+ T cells through IL-21–dependent mechanisms. Our data have uncovered the presence of a tissue-resident helper T cell population in the lung that plays a critical role in promoting the development of protective B cell and CD8+ T cell responses.


Blood ◽  
2005 ◽  
Vol 106 (6) ◽  
pp. 1924-1931 ◽  
Author(s):  
Svenja Hardtke ◽  
Lars Ohl ◽  
Reinhold Förster

Abstract The production of high-affinity antibodies to T-dependent antigens requires the interaction of B cells and T helper cells expressing receptors specific for the same antigen. Although several mechanisms have been elucidated that regulate B-cell trafficking within lymphoid organs, less is known about molecular cues that guide the small subpopulation of CD4+ follicular T helper cells to B-cell follicles. Using adoptive transfer of transgenic T cells in mice, we demonstrate that antigen-induced activation leads to a finely tuned positioning of T cells either to the T-cell area or the B-cell follicle. We show that expression of CXCR5 is indispensable for T cells to enter B-cell follicles, whereas expression of CCR7 provides a counteracting signal to retain activated T cells in the T-cell area. Although only few T cells transiently migrate from the T-cell area to the B-cell follicle of peripheral lymph nodes following antigenic challenge, this step is essential to provide the help B cells require to produce antibodies efficiently. Thus, we demonstrate that the balanced expression of CCR7 and CXCR5 determines the positioning and proper function of follicular T helper cells.


1982 ◽  
Vol 156 (2) ◽  
pp. 539-549 ◽  
Author(s):  
K Gleason ◽  
H Köhler

Priming of BALB/c mice with phosphorylcholine-hemocyanin (PC-Hy) induces T helper cells that are detected in splenic fragment cultures responding to immunization with trinitrophenylated PC-binding myeloma proteins, TEPC 15 (TNP-T15) and MOPC 167 (TNP-M167). Trinitrophenylation did not alter the binding site, idiotype, or isotype of the antibodies as demonstrated by binding studies. To assay idiotype-recognizing helper cells, Ly-2.2-depleted T cells from PC-Hy-primed donor mice were transferred to syngeneic athymic mice. Splenic anti-trinitrophenol fragment cultures were prepared from the nude recipients, and the response to TNP-T15 and TNP-M167 was measured by enzyme-linked immunosorbent assay. The number of responding fragments is dependent on the number of transferred primed T cells. The homing efficiency of 51Cr-labeled helper cells into the spleen of nude recipients was determined. The frequencies of T helper cells taken from PC-Hy-primed donors required for a B cell response to TNP-T15 or TNP-M167 were indistinguishable. The fine specificity of the anti-PC idiotype-recognizing T helper cells was studied by adding hapten (PC) or unconjugated myeloma proteins to fragment cultures as inhibitors at the time of immunization. PC and PC-bovine serum albumin, as well as T15 and M167, inhibited the helper function in vitro. Furthermore, free heavy chains of T15 and M167 partially inhibited T help, but free light chains of both idiotypes had no effect. These findings collectively show that T helper cells, induced by priming with antigen, recognize a shared idiotypic determination on T15 and M167 that is part of the PC binding site. The heavy chains of T15 and M167 appears to be the major structural component of this determinant. Evidently, T helper cells can recognize a shared determinant that is present on idiotypically different myeloma proteins. This determinant appears to be conserved throughout evolutionary and somatic mutations. The role of this shared, binding site-related idiotypic determinant as a regulatory idiotype in T-B cell interaction is discussed.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1817-1817
Author(s):  
Frank Neumann ◽  
Boris Kubuschok ◽  
Klaus-Dieter Preuss ◽  
Claudia Schormann ◽  
Michael Pfreundschuh

Abstract Background: Paratarg-7 (P-7) is the antigenic target of paraproteins(Preuss et al. Int J Cancer 2009;125:656-61) from 15% of European and 37% of African-American MGUS/MM patients, stronlgy supporting a role of P-7 in the pathogenesis of MGUS/MM via chronic auto-antigenic stimulation. All patients with P-7 specific paraproteins are carriers of the hyperphosphorylated version of p-7 (pP-7). We recently identified pP-7 specific T-helper cells which were restricted by certain "permissive" HLA-DR haplotypes (Neumann et al., Int J Cancer 2015; 137:1076-1084). These HLA-DR subtypes are overrepresented among patients with P-7 specific paraproteins compared to the corresponding normal population indicating that there are two prerequisites for the development of MGUS/MM with a P-7 specific paraprotein: 1st carriership of pP-7 and 2nd a permissive HLA-DR subtype. We now investigated the functional role of the pP-7 specific T-helper cells and their interaction with peripheral B cells with cognate specificity. Methods: Three patients with MGUS or MM, respectively, with a P-7 specific paraprotein and pP-7 specific T-helper cells were included in this study so far. In addition, the B cells from one healthy pP-7 carrying son of one of the patients were also analyzed. In vitro stimulation of antigen-specific peripheral B cells by pP-7 specific T-helper cells followed a modified protocol previously described by Lanzavecchia et al. (Eur J Immunol. 1983; 13:733-738). To this end, CD19+ B cells and CD3+ T cells were magnetically isolated from the proband's PBMC. T cells were replaced by corresponding T-helper cell clones. Results: In all patients studied, the autologous pP-7 specific T-helper cells stimulated the peripheral B cells to produce P-7 specific antibodies. The P-7 specific B-cell responses were monoclonal and the immunoglobulin type was the same as the paraprotein of the corresponding patient. In contrast, B-cell stimulation with CMV-pp65 specific T-helper cells used as controls always induced an antigen-specific, yet polyclonal response. When the peripheral B cells of a pP-7 carrying patient's son were also stimulated with pP-7 specific T-helper cells, they induced - in contrast to the mother - a polyclonal P-7 specific antibody response in his B cells, even though mother and son shared a "permissive" HLA-DR haplotype (HLA-DRB1*1301). Conclusion: In patients with MGUS/MM monoclonal B cells are found in the peripheral blood that can be induced to produce monoclonal antibodies identical to the serum paraprotein by T-helper cells with specificity for the antigenic target of the paraprotein. This does not only support an indispensable role of these T-helper cells in the pathogenesis of MGUS/MM via chronic antigenic stimulation, it also proves that precursors of the malignant plasma cells can be found in the peripheral blood that might fuel the development of malignant plasma cells. Cytogenetic and molecular genetic analyses are underway to determine if these precursor B-cells share the malignant genotype of their malignant plasma cells. These B cells can now be targeted by PARs (p araprotein a ntigens for r everse targeting) conjugated to toxins, as parts of bispecific constructs (PAR/CD3 or PAR/CD16) and/or PAR/CAR T cells. Use of PARs can be envisaged prophylactically for carriers of modified autoantigens like pP-7 with a permissive HLA-DR haplotype and a monoclonal B-cell response in vitro or in MM patients achieving a VGPR or CR after treatment for the prevention of relapse. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Margherita Amadi ◽  
Silvia Visentin ◽  
Francesca Tosato ◽  
Paola Fogar ◽  
Giulia Giacomini ◽  
...  

Abstract Objectives Preterm premature rupture of membranes (pPROM) causes preterm delivery, and increases maternal T-cell response against the fetus. Fetal inflammatory response prompts maturation of the newborn’s immunocompetent cells, and could be associated with unfavorable neonatal outcome. The aims were to examine the effects of pPROM (Mercer BM. Preterm premature rupture of the membranes: current approaches to evaluation and management. Obstet Gynecol Clin N Am 2005;32:411) on the newborn’s and mother’s immune system and (Test G, Levy A, Wiznitzer A, Mazor M, Holcberg G, Zlotnik A, et al. Factors affecting the latency period in patients with preterm premature rupture of membranes (pPROM). Arch Gynecol Obstet 2011;283:707–10) to assess the predictive value of immune system changes in neonatal morbidity. Methods Mother-newborn pairs (18 mothers and 23 newborns) who experienced pPROM and controls (11 mothers and 14 newborns), were enrolled. Maternal and neonatal whole blood samples underwent flow cytometry to measure lymphocyte subpopulations. Results pPROM-newborns had fewer naïve CD4 T-cells, and more memory CD4 T-cells than control newborns. The effect was the same for increasing pPROM latency times before delivery. Gestational age and birth weight influenced maturation of the newborns’ lymphocyte subpopulations and white blood cells, notably cytotoxic T-cells, regulatory T-cells, T-helper cells (absolute count), and CD4/CD8 ratio. Among morbidities, fewer naïve CD8 T-cells were found in bronchopulmonary dysplasia (BPD) (p=0.0009), and more T-helper cells in early onset sepsis (p=0.04). Conclusions pPROM prompts maturation of the newborn’s T-cell immune system secondary to antigenic stimulation, which correlates with pPROM latency. Maternal immunity to inflammatory conditions is associated with a decrease in non-major histocompatibility complex (MHC)-restricted cytotoxic cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Michaela Gasch ◽  
Tina Goroll ◽  
Mario Bauer ◽  
Denise Hinz ◽  
Nicole Schütze ◽  
...  

The T helper cell subsets Th1, Th2, Th17, and Treg play an important role in immune cell homeostasis, in host defense, and in immunological disorders. Recently, much attention has been paid to Th17 cells which seem to play an important role in the early phase of the adoptive immune response and autoimmune disease. When generating Th17 cells underin vitroconditions the amount of IL-17A producing cells hardly exceeds 20% while the nature of the remaining T cells is poorly characterized. As engagement of the aryl hydrocarbon receptor (AHR) has also been postulated to modulate the differentiation of T helper cells into Th17 cells with regard to the IL-17A expression we ask how far do Th17 polarizing conditions in combination with ligand induced AHR activation have an effect on the production of other T helper cell cytokines. We found that a high proportion of T helper cells cultured under Th17 polarizing conditions are IL-8 and IL-9 single producing cells and that AHR activation results in an upregulation of IL-8 and a downregulation of IL-9 production. Thus, we have identified IL-8 and IL-9 producing T helper cells which are subject to regulation by the engagement of the AHR.


Sign in / Sign up

Export Citation Format

Share Document