scholarly journals Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte: endothelial cell interactions

Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2767-2773 ◽  
Author(s):  
NW Lukacs ◽  
RM Strieter ◽  
V Elner ◽  
HL Evanoff ◽  
MD Burdick ◽  
...  

The extravasation of leukocytes from the lumen of the vessel to a site of inflammation requires specific binding events. The interaction of leukocytes with endothelium, via specific receptors, may provide intracellular signals that activate extravasating cells. In the present study, we have investigated the production of chemokines, interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1) during monocyte: endothelial cell interactions. Both unstimulated and interferon-gamma (IFN-gamma)-prestimulated human umbilical vein endothelial cells (HUVEC) produced low constitutive levels of IL-8 and MCP-1. The addition of enriched monocytes with unstimulated HUVEC resulted in synergistic increases in production of both IL-8 and MCP-1. Monocytes cultured with IFN-gamma-preactivated HUVECs demonstrated little additional increase in IL-8 and MCP-1 production in coculture assays compared with unstimulated HUVEC. Northern blot analysis paralleled the protein data, demonstrating upregulated expression of IL-8 and MCP-1 mRNA in stimulated and unstimulated coculture assays. Culture of enriched monocytes and endothelial cells in transwells demonstrated no increases in IL-8 or MCP-1, indicating the necessity for cellular contact for chemokine production. In previous investigations, we have demonstrated that increased monocyte-derived MIP-1 alpha production was induced by intracellular adhesion molecule-1 (ICAM-1) interactions on activated HUVECs. In contrast, addition of anti-ICAM-1 monoclonal antibodies (MoAbs) did not diminish the production of IL-8 and MCP-1 in the present study. Furthermore, neither antibodies to IL-1 nor tumor necrosis factor (TNF) diminished the production of either IL-8 or MCP- 1. However, when soluble matrix proteins were added to the coculture to block cellular interactions, the chemokine protein and mRNA levels were significantly decreased. IL-8 production was decreased by both soluble collagen and fibronectin, whereas MCP-1 was decreased by only soluble collagen, suggesting differential activation pathways. These results indicate that IL-8 and MCP-1 production are increased during monocyte and endothelial cell interactions in part due to matrix protein binding mechanisms. This mechanism may serve a role in cell activation, production of chemokines, as well as extravasation and recruitment of additional leukocytes during inflammatory responses.

Blood ◽  
1995 ◽  
Vol 86 (7) ◽  
pp. 2767-2773 ◽  
Author(s):  
NW Lukacs ◽  
RM Strieter ◽  
V Elner ◽  
HL Evanoff ◽  
MD Burdick ◽  
...  

Abstract The extravasation of leukocytes from the lumen of the vessel to a site of inflammation requires specific binding events. The interaction of leukocytes with endothelium, via specific receptors, may provide intracellular signals that activate extravasating cells. In the present study, we have investigated the production of chemokines, interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1) during monocyte: endothelial cell interactions. Both unstimulated and interferon-gamma (IFN-gamma)-prestimulated human umbilical vein endothelial cells (HUVEC) produced low constitutive levels of IL-8 and MCP-1. The addition of enriched monocytes with unstimulated HUVEC resulted in synergistic increases in production of both IL-8 and MCP-1. Monocytes cultured with IFN-gamma-preactivated HUVECs demonstrated little additional increase in IL-8 and MCP-1 production in coculture assays compared with unstimulated HUVEC. Northern blot analysis paralleled the protein data, demonstrating upregulated expression of IL-8 and MCP-1 mRNA in stimulated and unstimulated coculture assays. Culture of enriched monocytes and endothelial cells in transwells demonstrated no increases in IL-8 or MCP-1, indicating the necessity for cellular contact for chemokine production. In previous investigations, we have demonstrated that increased monocyte-derived MIP-1 alpha production was induced by intracellular adhesion molecule-1 (ICAM-1) interactions on activated HUVECs. In contrast, addition of anti-ICAM-1 monoclonal antibodies (MoAbs) did not diminish the production of IL-8 and MCP-1 in the present study. Furthermore, neither antibodies to IL-1 nor tumor necrosis factor (TNF) diminished the production of either IL-8 or MCP- 1. However, when soluble matrix proteins were added to the coculture to block cellular interactions, the chemokine protein and mRNA levels were significantly decreased. IL-8 production was decreased by both soluble collagen and fibronectin, whereas MCP-1 was decreased by only soluble collagen, suggesting differential activation pathways. These results indicate that IL-8 and MCP-1 production are increased during monocyte and endothelial cell interactions in part due to matrix protein binding mechanisms. This mechanism may serve a role in cell activation, production of chemokines, as well as extravasation and recruitment of additional leukocytes during inflammatory responses.


2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Chaur-Jong Hu ◽  
Yueh-Lun Lee ◽  
Neng-Yao Shih ◽  
Yi-Yuan Yang ◽  
Suparat Charoenfuprasert ◽  
...  

Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1) is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8), a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs). Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-αstimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-αinduced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document