scholarly journals PU.1 (Spi-1) and C/EBP alpha regulate the granulocyte colony- stimulating factor receptor promoter in myeloid cells

Blood ◽  
1996 ◽  
Vol 88 (4) ◽  
pp. 1234-1247 ◽  
Author(s):  
LT Smith ◽  
S Hohaus ◽  
DA Gonzalez ◽  
SE Dziennis ◽  
DG Tenen

Cytokines, important for lineage commitment and differentiation during hematopoiesis, exert their influence by binding specific receptors. Receptor expression is tightly regulated and examining the factors that govern their expression will allow better understanding of the events that determine lineage commitment. The granulocyte colony-stimulating factor (G-CSF) receptor is expressed exclusively in myeloid cells and the placenta. We show here that the G-CSF receptor transcription start site is identical in each of these tissues. A 1,391-bp fragment of the G-CSF receptor promoter is both active in myeloid cell lines and tissue specific. We have also found two regions that are important for G-CSF receptor promoter activity. One region, located at bp -49, contains a GCAAT site that specifically binds the C/EBP alpha transcription factor in myeloid nuclear extracts. Mutation of this site prevents C/EBP alpha binding and reduces promoter activity by 60%. The other functionally important region of the G-CSF receptor promoter is in the 5′ untranslated region, at bp +36 and +43, where there are two sites for the ets family member PU.1. Mutation of these sites prevents PU.1 binding and reduces promoter activity by 75%. These results reinforce the importance of both PU.1 and C/EBP alpha in the expression of myeloid-specific genes and neutrophil development.

1992 ◽  
Vol 12 (1) ◽  
pp. 183-189
Author(s):  
K Morishita ◽  
E Parganas ◽  
T Matsugi ◽  
J N Ihle

Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.


1992 ◽  
Vol 12 (1) ◽  
pp. 183-189 ◽  
Author(s):  
K Morishita ◽  
E Parganas ◽  
T Matsugi ◽  
J N Ihle

Expression of the Evi-1 gene is frequently activated in murine myeloid leukemias by retroviral insertions immediately 5' or 90 kb 5' of the gene. The Evi-1 gene product is a nuclear, DNA-binding zinc finger protein of 145 kDa. On the basis of the properties of the myeloid cell lines in which the Evi-1 gene is activated, it has been hypothesized that its expression blocks normal differentiation. To explore this proposed role, we have constructed a retrovirus vector containing the gene and examined its effects on an interleukin-3-dependent myeloid cell line that differentiates in response to granulocyte colony-stimulating factor (G-CSF). Expression of the Evi-1 gene in these cells did not alter the normal growth factor requirements of the cells. However, expression of the Evi-1 gene blocked the ability of the cells to express myeloperoxidase and to terminally differentiate to granulocytes in response to G-CSF. This effect was not due to altered expression of the G-CSF receptor or to changes in the initial responses of the cells to G-CSF. These results support the hypothesis that the inappropriate expression of the Evi-1 gene in myeloid cells interferes with the ability of the cells to terminally differentiate.


Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2535-2546 ◽  
Author(s):  
Clifford Liongue ◽  
Chris J. Hall ◽  
Bree A. O'Connell ◽  
Phil Crosier ◽  
Alister C. Ward

Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.


2018 ◽  
Vol 217 (9) ◽  
pp. 1481-1490 ◽  
Author(s):  
Sivakumar Periasamy ◽  
Jonathan A Harton

Abstract Bacterial pneumonia is a common risk factor for acute lung injury and sepsis-mediated death, but the mechanisms underlying the overt inflammation and accompanying pathology are unclear. Infiltration of immature myeloid cells and necrotizing inflammation mediate severe pathology and death during pulmonary infection with Francisella tularensis. However, eliciting mature myeloid cells provides protection. Yet, the host factors responsible for this pathologic immature myeloid cell response are unknown. Here, we report that while the influx of both mature and immature myeloid cells is strictly MyD88 dependent, the interleukin 1 (IL-1) receptor mediates an important dual function via its ligands IL-1α and IL-1β. Although IL-1β favors the appearance of bacteria-clearing mature myeloid cells, IL-1α contributes to lung infiltration by ineffective and pathologic immature myeloid cells. Finally, IL-1α and IL-1β are not the sole factors involved, but myeloid cell responses during acute pneumonia were largely unaffected by lung levels of interleukin 10, interleukin 17, CXCL1, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 916-922 ◽  
Author(s):  
ES Medlock ◽  
DL Kaplan ◽  
M Cecchini ◽  
TR Ulich ◽  
J del Castillo ◽  
...  

Abstract We studied the effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) administration to pregnant rats upon fetal and neonatal myelopoiesis. Pregnant rats were treated with rhG-CSF twice daily for 2, 4, and 6 days before parturition. rhG-CSF crossed the placenta and reached peak fetal serum concentrations 4 hours after administration. Peak fetal serum levels were 1,000-fold lower than levels detected in the dam. Hematopoietic effects of rhG-CSF were assessed by cytologic analysis of the newborn blood, spleen, bone marrow, thymus, and liver. White blood cell counts were increased twofold to fourfold in newborns. This increase was due to circulating numbers of polymorphonuclear cells (PMN). rhG-CSF induced a myeloid hyperplasia in the newborn marrow consisting of immature and mature myeloid cells in the day-2 and day-4 treated pups. Bone marrow of pups treated for 6 days contained mostly hyper-segmented PMN with little or no increase in myeloid precursors. An increase in the number of postmitotic (PMN, bands, and metamyelocytes) and mitotic (promyeloblasts, myeloblasts, and metamyeloblasts) myeloid cells in the spleen of neonates was observed. No change was detected in splenic lymphocytes or monocytes. No effect of rhG-CSF was noted in the newborn liver or thymus. These results demonstrate that maternally administered rhG-CSF crosses the placenta and specifically induces bone marrow and spleen myelopoiesis in the fetus and neonate. The significant myelopoietic effects of rhG-CSF at low concentrations in the fetus suggest an exquisite degree of developmental sensitivity to this cytokine and may provide enhanced defense mechanisms to the neonate.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 916-922 ◽  
Author(s):  
ES Medlock ◽  
DL Kaplan ◽  
M Cecchini ◽  
TR Ulich ◽  
J del Castillo ◽  
...  

We studied the effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) administration to pregnant rats upon fetal and neonatal myelopoiesis. Pregnant rats were treated with rhG-CSF twice daily for 2, 4, and 6 days before parturition. rhG-CSF crossed the placenta and reached peak fetal serum concentrations 4 hours after administration. Peak fetal serum levels were 1,000-fold lower than levels detected in the dam. Hematopoietic effects of rhG-CSF were assessed by cytologic analysis of the newborn blood, spleen, bone marrow, thymus, and liver. White blood cell counts were increased twofold to fourfold in newborns. This increase was due to circulating numbers of polymorphonuclear cells (PMN). rhG-CSF induced a myeloid hyperplasia in the newborn marrow consisting of immature and mature myeloid cells in the day-2 and day-4 treated pups. Bone marrow of pups treated for 6 days contained mostly hyper-segmented PMN with little or no increase in myeloid precursors. An increase in the number of postmitotic (PMN, bands, and metamyelocytes) and mitotic (promyeloblasts, myeloblasts, and metamyeloblasts) myeloid cells in the spleen of neonates was observed. No change was detected in splenic lymphocytes or monocytes. No effect of rhG-CSF was noted in the newborn liver or thymus. These results demonstrate that maternally administered rhG-CSF crosses the placenta and specifically induces bone marrow and spleen myelopoiesis in the fetus and neonate. The significant myelopoietic effects of rhG-CSF at low concentrations in the fetus suggest an exquisite degree of developmental sensitivity to this cytokine and may provide enhanced defense mechanisms to the neonate.


Sign in / Sign up

Export Citation Format

Share Document