Granulocyte Colony-Stimulating Factor-Stimulated Proliferation of Myeloid Cells: Mode of Cell Cycle Control by a Range of Inhibitors

1996 ◽  
Vol 16 (10) ◽  
pp. 869-877 ◽  
Author(s):  
ALISTER C. WARD ◽  
BRIGITTE W. HOFFMANN ◽  
XAVIER F. CSAR ◽  
JOHN A. HAMILTON
2006 ◽  
Vol 26 (21) ◽  
pp. 8052-8060 ◽  
Author(s):  
Ewa Sicinska ◽  
Young-Mi Lee ◽  
Judith Gits ◽  
Hirokazu Shigematsu ◽  
Qunyan Yu ◽  
...  

ABSTRACT The proliferation of neutrophil granulocyte lineage is driven largely by granulocyte colony-stimulating factor (G-CSF) acting via the G-CSF receptors. In this study, we show that mice lacking cyclin D3, a component of the core cell cycle machinery, are refractory to stimulation by the G-CSF. Consequently, cyclin D3-null mice display deficient maturation of granulocytes in the bone marrow and have reduced levels of neutrophil granulocytes in their peripheral blood. The mutant mice are unable to mount a normal response to bacterial challenge and succumb to microbial infections. In contrast, the expansion of hematopoietic stem cells and lineage-committed myeloid progenitors proceeds relatively normally in mice lacking cyclin D3, revealing that the requirement for cyclin D3 function operates at later stages of neutrophil development. Importantly, we verified that this requirement is specific to cyclin D3, as mice lacking other G1 cyclins (D1, D2, E1, or E2) display normal granulocyte counts. Our analyses revealed that in the bone marrow cells of wild-type mice, activation of the G-CSF receptor leads to upregulation of cyclin D3. Collectively, these results demonstrate that cyclin D3 is an essential cell cycle recipient of G-CSF signaling, and they provide a molecular link of how G-CSF-dependent signaling triggers cell proliferation.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 916-922 ◽  
Author(s):  
ES Medlock ◽  
DL Kaplan ◽  
M Cecchini ◽  
TR Ulich ◽  
J del Castillo ◽  
...  

Abstract We studied the effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) administration to pregnant rats upon fetal and neonatal myelopoiesis. Pregnant rats were treated with rhG-CSF twice daily for 2, 4, and 6 days before parturition. rhG-CSF crossed the placenta and reached peak fetal serum concentrations 4 hours after administration. Peak fetal serum levels were 1,000-fold lower than levels detected in the dam. Hematopoietic effects of rhG-CSF were assessed by cytologic analysis of the newborn blood, spleen, bone marrow, thymus, and liver. White blood cell counts were increased twofold to fourfold in newborns. This increase was due to circulating numbers of polymorphonuclear cells (PMN). rhG-CSF induced a myeloid hyperplasia in the newborn marrow consisting of immature and mature myeloid cells in the day-2 and day-4 treated pups. Bone marrow of pups treated for 6 days contained mostly hyper-segmented PMN with little or no increase in myeloid precursors. An increase in the number of postmitotic (PMN, bands, and metamyelocytes) and mitotic (promyeloblasts, myeloblasts, and metamyeloblasts) myeloid cells in the spleen of neonates was observed. No change was detected in splenic lymphocytes or monocytes. No effect of rhG-CSF was noted in the newborn liver or thymus. These results demonstrate that maternally administered rhG-CSF crosses the placenta and specifically induces bone marrow and spleen myelopoiesis in the fetus and neonate. The significant myelopoietic effects of rhG-CSF at low concentrations in the fetus suggest an exquisite degree of developmental sensitivity to this cytokine and may provide enhanced defense mechanisms to the neonate.


Blood ◽  
1993 ◽  
Vol 81 (4) ◽  
pp. 916-922 ◽  
Author(s):  
ES Medlock ◽  
DL Kaplan ◽  
M Cecchini ◽  
TR Ulich ◽  
J del Castillo ◽  
...  

We studied the effect of recombinant human granulocyte colony- stimulating factor (rhG-CSF) administration to pregnant rats upon fetal and neonatal myelopoiesis. Pregnant rats were treated with rhG-CSF twice daily for 2, 4, and 6 days before parturition. rhG-CSF crossed the placenta and reached peak fetal serum concentrations 4 hours after administration. Peak fetal serum levels were 1,000-fold lower than levels detected in the dam. Hematopoietic effects of rhG-CSF were assessed by cytologic analysis of the newborn blood, spleen, bone marrow, thymus, and liver. White blood cell counts were increased twofold to fourfold in newborns. This increase was due to circulating numbers of polymorphonuclear cells (PMN). rhG-CSF induced a myeloid hyperplasia in the newborn marrow consisting of immature and mature myeloid cells in the day-2 and day-4 treated pups. Bone marrow of pups treated for 6 days contained mostly hyper-segmented PMN with little or no increase in myeloid precursors. An increase in the number of postmitotic (PMN, bands, and metamyelocytes) and mitotic (promyeloblasts, myeloblasts, and metamyeloblasts) myeloid cells in the spleen of neonates was observed. No change was detected in splenic lymphocytes or monocytes. No effect of rhG-CSF was noted in the newborn liver or thymus. These results demonstrate that maternally administered rhG-CSF crosses the placenta and specifically induces bone marrow and spleen myelopoiesis in the fetus and neonate. The significant myelopoietic effects of rhG-CSF at low concentrations in the fetus suggest an exquisite degree of developmental sensitivity to this cytokine and may provide enhanced defense mechanisms to the neonate.


Blood ◽  
1999 ◽  
Vol 94 (2) ◽  
pp. 560-571 ◽  
Author(s):  
Xinping Wang ◽  
Edward Scott ◽  
Charles L. Sawyers ◽  
Alan D. Friedman

Within hematopoiesis, C/EBP is expressed only in myeloid cells, and PU.1 is expressed mainly in myeloid and B-lymphoid cells. C/EBP-deficient mice lack the neutrophil lineage and retain monocytes, whereas PU.1-deficient mice lack monocytes and have severely reduced neutrophils. We expressed a C/EBP-estrogen receptor ligand-binding domain fusion protein, C/EBPWT-ER, in 32D cl3 myeloblasts. 32D cl3 cells proliferate in interleukin-3 (IL-3) and differentiate to neutrophils in granulocyte colony-stimulating factor (G-CSF). In the presence of estradiol, C/EBPWT-ER induced morphologic differentiation and the expression of the myeloperoxidase, lactoferrin, and G-CSF receptor mRNAs. C/EBPWT-ER also induced a G1/S cell cycle block, with induction of p27 and Rb hypophosphorylation. bcr-ablp210 prevented 32D cl3 cell differentiation. Activation of C/EBP-ER in 32D-bcr-ablp210 or Ba/F3 B-lymphoid cells induced cell cycle arrest independent of terminal differentiation. C/EBPWT-ER induced endogenous PU.1 mRNA within 8 hours in both 32D cl3 and Ba/F3 cells, even in the presence of cycloheximide, indicating that C/EBP directly activates the PU.1 gene. However, activation of a PU.1-ER fusion protein in 32D cl3 cells induced myeloperoxidase (MPO) RNA but not terminal differentiation. Thus, C/EBP acts downstream of G-CSF and upstream of PU.1, p27, and potentially other factors to induce myeloblasts to undergo granulocytic differentiation and cell cycle arrest.


Sign in / Sign up

Export Citation Format

Share Document