scholarly journals Molecular Analysis of Eight Biochemically Unique Glucose-6-Phosphate Dehydrogenase Variants Found in Japan

Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4624-4627 ◽  
Author(s):  
Akira Hirono ◽  
Hisaichi Fujii ◽  
Toshikuni Takano ◽  
Yasuko Chiba ◽  
Yoichi Azuno ◽  
...  

Abstract We analyzed the molecular mutations of eight known Japanese glucose-6-phosphate dehydrogenase (G6PD) variants with unique biochemical properties. Three of them were caused by novel missense mutations: G6PD Musashino by 185 C→T, G6PD Asahikawa by 695 G→A, and G6PD Kamiube by 1387 C→T. Predicted amino acid substitutions causing asymptomatic variants G6PD Musashino (62 Pro→Phe) and G6PD Kamiube (463 Arg→Cys) were located in regions near the amino or carboxyl end of the polypeptide chain, whereas an amino acid change 232 Cys→Tyr causing a class 1 variant G6PD Asahikawa was located in the region where amino acid alterations in some class 1 variants were clustered. The other five variants had known missense mutations, namely, G6PD Fukushima, 1246 G→A, G6PD Morioka, 1339 G→A, and G6PD Iwate, G6PD Niigata and G6PD Yamaguchi, 1160 G→A, which cause variants, G6PD Tokyo, G6PD Santiago de Cuba, and G6PD Beverly Hills, respectively.

2020 ◽  
Author(s):  
Maria C. Sterrett ◽  
Liz Enyenihi ◽  
Sara W. Leung ◽  
Laurie Hess ◽  
Sarah E. Strassler ◽  
...  

AbstractRNA exosomopathies, a growing family of tissue-specific diseases, are linked to missense mutations in genes encoding the structural subunits of the conserved 10-subunit exoribonuclease complex, the RNA exosome. Such mutations in the cap subunit gene EXOSC2 cause the novel syndrome SHRF (Short stature, Hearing loss, Retinitis pigmentosa and distinctive Facies). In contrast, exosomopathy mutations in the cap subunit gene EXOSC3 cause pontocerebellar hypoplasia type 1b (PCH1b). Though having strikingly different disease pathologies, EXOSC2 and EXOSC3 exosomopathy mutations result in amino acid substitutions in similar, conserved domains of the cap subunits, suggesting that these exosomopathy mutations have distinct consequences for RNA exosome function. We generated the first in vivo model of the SHRF pathogenic amino acid substitutions using budding yeast by introducing the EXOSC2 mutations in the orthologous S. cerevisiae gene RRP4. The resulting rrp4 mutant cells have defects in cell growth and RNA exosome function. We detect significant transcriptomic changes in both coding and non-coding RNAs in the rrp4 variant, rrp4-G226D, which models EXOSC2 p.Gly198Asp. Comparing this rrp4-G226D mutant to the previously studied S. cerevisiae model of EXOSC3 PCH1b mutation, rrp40-W195R, reveals that these mutants have disparate effects on certain RNA targets, providing the first evidence for different mechanistic consequences of these exosomopathy mutations. Congruently, we detect specific negative genetic interactions between RNA exosome cofactor mutants and rrp4-G226D but not rrp40-W195R. These data provide insight into how SHRF mutations could alter the function of the RNA exosome and allow the first direct comparison of exosomopathy mutations that cause distinct pathologies.


2018 ◽  
Vol 2 (5) ◽  
pp. 681-686 ◽  
Author(s):  
Jaime Andrés Rivas-Pardo

Titin — the largest protein in the human body — spans half of the muscle sarcomere from the Z-disk to the M-band through a single polypeptide chain. More than 30 000 amino acid residues coded from a single gene (TTN, in humans Q8WZ42) form a long filamentous protein organized in individual globular domains concatenated in tandem. Owing to its location and close interaction with the other muscle filaments, titin is considered the third filament of muscle, after the thick-myosin and the thin-actin filaments.


2007 ◽  
Vol 42 (3) ◽  
pp. 367-373 ◽  
Author(s):  
Suenghyup Oh ◽  
Toshinori Kozaki ◽  
Takashi Tomita ◽  
Yoshiaki Kono

2006 ◽  
Vol 73 (4) ◽  
pp. 1114-1119 ◽  
Author(s):  
Yukiko Maeda ◽  
Akinori Kiba ◽  
Kouhei Ohnishi ◽  
Yasufumi Hikichi

ABSTRACT Oxolinic acid (OA) resistance in field isolates of Burkholderia glumae, a causal agent of bacterial grain rot, is dependent on an amino acid substitution at position 83 in GyrA (GyrA83). In the present study, among spontaneous in vitro mutants from the OA-sensitive B. glumae strain Pg-10, we selected OA-resistant mutants that emerged at a rate of 5.7 � 10−10. Nucleotide sequence analysis of the quinolone resistance-determining region in GyrA showed that Gly81Cys, Gly81Asp, Asp82Gly, Ser83Arg, Asp87Gly, and Asp87Asn are observed in these OA-resistant mutants. The introduction of each amino acid substitution into Pg-10 resulted in OA resistance, similar to what was observed for mutants with the responsible amino acid substitution. In vitro growth of recombinants with Asp82Gly was delayed significantly compared to that of Pg-10; however, that of the other recombinants did not differ significantly. The inoculation of each recombinant into rice spikelets did not result in disease. In inoculated rice spikelets, recombinants with Ser83Arg grew less than Pg-10 during flowering, and growth of the other recombinants was reduced significantly. On the other hand, the reduced growth of recombinants with Ser83Arg in spikelets was compensated for under OA treatment, resulting in disease. These results suggest that amino acid substitutions in GyrA of B. glumae are implicated in not only OA resistance but also fitness on rice plants. Therefore, GyrA83 substitution is thought to be responsible for OA resistance in B. glumae field isolates.


2016 ◽  
Vol 60 (6) ◽  
pp. 3709-3716 ◽  
Author(s):  
Yi-Hsiang Cheng ◽  
Tzu-Lung Lin ◽  
Yi-Tsung Lin ◽  
Jin-Town Wang

Colistin is a last-resort antibiotic for treatment of carbapenem-resistantKlebsiella pneumoniae. A recent study indicated that missense mutations in the CrrB protein contribute to colistin resistance. In our previous study, mechanisms of colistin resistance were defined in 17 of 26 colistin-resistantK. pneumoniaeclinical isolates. Of the remaining nine strains, eight were highly resistant to colistin. In the present study,crrABsequences were determined for these eight strains. Six separate amino acid substitutions in CrrB (Q10L, Y31H, W140R, N141I, P151S, and S195N) were detected. Site-directed mutagenesis was used to generatecrrBloci harboring individual missense mutations; introduction of the mutated genes into a susceptible strain, A4528, resulted in 64- to 1,024-fold increases in colistin MICs. ThesecrrBmutants showed increased accumulation ofH239_3062,H239_3059,pmrA,pmrC, andpmrHtranscripts by quantitative reverse transcription (qRT)-PCR. Deletion ofH239_3062(but not that ofH239_3059) in the A4528crrB(N141I) strain attenuated resistance to colistin, andH239_3062was accordingly namedcrrC. Similarly, accumulation ofpmrA,pmrC, andpmrHtranscripts induced bycrrB(N141I) was significantly attenuated upon deletion ofcrrC. Complementation ofcrrCrestored resistance to colistin and accumulation ofpmrA,pmrC, andpmrHtranscripts in acrrB(N141I) ΔcrrCstrain. In conclusion, novel individual CrrB amino acid substitutions (Y31H, W140R, N141I, P151S, and S195N) were shown to be responsible for colistin resistance. We hypothesize that CrrB mutations induce CrrC expression, thereby inducing elevated expression of thepmrHFIJKLMoperon andpmrC(an effect mediated via the PmrAB two-component system) and yielding increased colistin resistance.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3764-3764 ◽  
Author(s):  
Wei Wei ◽  
Xiaofan Zhu ◽  
Renchi Yang ◽  
Bin Zhang

Abstract Most secreted proteins are glycosylated on the asparagine (N) residue with the consensus sequence N-X-S/T(X≠Proline).Coagulation factor VIII (FVIII) is heavily N-linked glycosylated with 5 consensus sites outside the B domain. However, the roles of these glycans are not well understood. Meanwhile, missense mutations which could create additional N-linked glycosylation sites have largely not been characterized in hemophilia A patients. In this study we first expressed individual domains of FVIII and determined that the A2, Cand C2 domains are efficiently secreted. The A1(N42,N239), A3 (N1810)and C1 (N2118)domains are glycosylated, whereas N582 in the A2 domain is not glycosylated. Only one hemophilia A missense mutation, S241C in the A1 domain, was found to abolish the consensus sequence for N-linked glycosylation at N239. We confirmed that the S241C mutant lost one glycan and became unstable inside cells. We also tested the other three glycosylation sites and found that elimination of the N-linked glycan at N2118 (N2118Q mutation) impaired the secretion of the C domain. This defect could not be rescued by adding another N-linked glycan (at N2062) in the C1 domain, indicating that the N2118 glycan is specifically required for the secretion of the C domain. We next searched the CHAMP F8 Mutation Database and the FVIII Variant Database and identified 19 missense mutations that potentially create an ectopic glycosylation site.These mutations are located in A1, A2, A3 and C1 domains, but none in the C2 domain. Only two mutations (I566T and M1772T) have previously been characterized.We found that all but one (I2071T) of these mutations gained an additional N-linked glycan. We further studied missense mutations in the A2 (A469T, A469S, I566T, M614T and G701S) and the C domain (W2062S, I2071T and D2131N) because these domains are secreted in cell culture. Whereas secretion of I566T, W2062S and D2131N mutants was comparable to their wild-type counterparts, secretion of other mutants decreased to 5%-30% of WT (P<0.05). Mutants that secreted into culture media nevertheless have low FVIII activity (<2%), indicating that these mutations cause cross reactive material positive hemophilia A. The consequences of additional N-linked glycan were further investigated using the A2 domain mutants, since this domain is normally unglycosylated. After treating with tunicamycin to block the N-linked glycosylation process in the endoplasmic reticulum (ER),the secretion of A2 domain with I566T andG701Smutants, which had relatively high secretion levels, decreased significantly. On the other hand, removing the additional glycan boosted the secretion of A469S and A469T, two low-secretion mutants.Tunicamycin treatment had no effect on another low secretion mutant,M614T.These results suggest that amino acid substitution in I566T andG701Smutationsis detrimental to the proper folding of the protein and the additional N-glycan plays a stabilization role. On the other hand, additional N-glycan plays a destabilization role in A469S and A469T mutations, contributing to disruption of folding in these mutants. For theM614Tmutation,the amino acid substitution alone is likely sufficient todestroy the protein folding. We also studied interactions of abnormally glycosylated mutants with ER chaperones.All the mutants with low secretion levels significantly induced expression of GRP78 to 1.5-2.0 folds(P<0.05), while mutants that maintain higher secretion levels did not affect GRP78 expression. The low secretion mutants also had increased binding to GRP78 and calreticulin, but not to calnexin.Therefore ER chaperones play a key role in the ER quality control of FVIII mutants. In conclusion, our results indicate that the effects of abnormal N-linked glycosylation on FVIII folding and secretionvary widely, from detrimental to beneficial. The impact of a particular glycan is likely determined by the location and the underlying amino acid change caused by the mutation. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 50 (2) ◽  
pp. 731-738 ◽  
Author(s):  
J. Delmas ◽  
F. Robin ◽  
F. Carvalho ◽  
C. Mongaret ◽  
R. Bonnet

ABSTRACT A random mutagenesis technique was used to predict the evolutionary potential of β-lactamase CTX-M-9 toward the acquisition of improved catalytic activity against ceftazidime. Thirty CTX-M mutants were obtained during three rounds of mutagenesis. These mutants conferred 1- to 128-fold-higher MICs of ceftazidime than the parental enzyme CTX-M-9. The CTX-M mutants contained one to six amino acid substitutions. Mutants harbored the substitutions Asp240Gly and Pro167Ser, which were previously observed in clinical CTX-M enzymes. Additional substitutions, notably Arg164His, Asp179Gly, and Arg276Ser, were observed near the active site. The kinetic constants of the three most active mutants revealed two distinct ways of improving catalytic efficiency against ceftazidime. One enzyme had a 17-fold-higher k cat value than CTX-M-9 against ceftazidime. The other two had 75- to 300-fold-lower Km values than CTX-M-9 against ceftazidime. The current emergence of CTX-M β-lactamases with improved activity against ceftazidime may therefore be the beginning of an evolutionary process which might subsequently generate a great diversity of CTX-M-type ceftazidimases.


2015 ◽  
Vol 18 (2) ◽  
pp. 255-259 ◽  
Author(s):  
W. Socha ◽  
J. Rola ◽  
J.F. Żmudziński

AbstractThe genetic stability of ORF1a encoding non-structural proteins nsp1, nsp2, nsp3 and nsp4 of equine arteritis virus (EAV) has been analysed for nearly seven years in a persistently infected stallion of the Malopolska breed. Between November 2004 and June 2011, 11 semen samples were collected. Viral RNA extracted from semen of this carrier stallion was amplified, sequenced and compared with the sequences of the other known strains of EAV. Sequence analysis of ORF1a showed 84 synonymous and 16 non-synonymous mutations. The most variable part of ORF1a was the region encoding nsp2 protein with 13 non-synonymous substitutions. The degree of amino acid identity between isolates ranged from 98.91 to 100%. Only single non-synonymous mutations were detected in nsp1 (one substitution) and nsp4 (two substitutions). The most stable was nsp3 in which no amino acid substitutions were observed during the whole period of observation.


FEBS Letters ◽  
1975 ◽  
Vol 58 (1-2) ◽  
pp. 149-154 ◽  
Author(s):  
M. Goossens ◽  
M.C. Garel ◽  
J. Auvinet ◽  
P. Basset ◽  
P.Ferreira Gomes ◽  
...  

1986 ◽  
Vol 103 (5) ◽  
pp. 1903-1910 ◽  
Author(s):  
D Wang ◽  
A Villasante ◽  
S A Lewis ◽  
N J Cowan

We describe the structure of a novel and unusually heterologous beta-tubulin isotype (M beta 1) isolated from a mouse bone marrow cDNA library, and a second isotype (M beta 3) isolated from a mouse testis cDNA library. Comparison of M beta 1 and M beta 3 with the completed (M beta 4, M beta 5) or extended (M beta 2) sequence of three previously described beta-tubulin isotypes shows that each includes a distinctive carboxy-terminal region, in addition to multiple amino acid substitutions throughout the polypeptide chain. In every case where a mammalian interspecies comparison can be made, both the carboxy-terminal and internal amino acid substitutions that distinguish one isotype from another are absolutely conserved. We conclude that these characteristic differences are important in determining functional distinctions between different kinds of microtubule. The amino acid homologies between M beta 2, M beta 3, M beta 4, and M beta 5 are in the range of 95-97%; however the homology between M beta 1 and all the other isotypes is very much less (78%). The dramatic divergence in M beta 1 is due to multiple changes that occur throughout the polypeptide chain. The overall level of expression of M beta 1 is low, and is restricted to those tissues (bone marrow, spleen, developing liver and lung) that are active in hematopoiesis in the mouse. We predict that the M beta 1 isotype is functionally specialized for assembly into the mammalian marginal band.


Sign in / Sign up

Export Citation Format

Share Document