scholarly journals Interleukin-12 Preserves the Graft-Versus-Leukemia Effect of Allogeneic CD8 T Cells While Inhibiting CD4-Dependent Graft-Versus-Host Disease in Mice

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4651-4660 ◽  
Author(s):  
Yong-Guang Yang ◽  
Justin J. Sergio ◽  
Denise A. Pearson ◽  
Gregory L. Szot ◽  
Akira Shimizu ◽  
...  

We have recently demonstrated that a single injection of 4,900 IU of interleukin-12 (IL-12) on the day of bone marrow transplantation (BMT) markedly inhibits acute graft-versus-host disease (GVHD) in a fully major histocompatibility complex plus minor antigen-mismatched BMT model (A/J → B10, H-2a → H-2b), in which donor CD4+ T cells are required for the induction of acute GVHD. We show here that donor CD8-dependent graft-versus-leukemia (GVL) effects against EL4 (H-2b) leukemia/lymphoma can be preserved while GVHD is inhibited by IL-12 in this model. In mice in which IL-12 mediated a significant protective effect against GVHD, marked GVL effects of allogeneic T cells against EL4 were observed. GVL effects against EL4 depended on CD8-mediated alloreactivity, protection was not observed in recipients of either syngeneic (B10) or CD8-depleted allogeneic spleen cells. Furthermore, we analyzed IL-12–treated recipients of EL4 and A/J spleen cells which survived for more than 100 days. No EL4 cells were detected in these mice by flow cytometry, tissue culture, adoptive transfer, necropsies, or histologic examination. Both GVL effects and the inhibitory effect of IL-12 on GVHD were diminished by neutralizing anti–interferon-γ (IFN-γ) monoclonal antibody. This study demonstrates that IL-12–induced IFN-γ production plays a role in the protective effect of IL-12 against GVHD. Furthermore, IFN-γ is involved in the GVL effect against EL4 leukemia, demonstrating that protection from CD4-mediated GVHD and CD8-dependent anti-leukemic activity can be provided by a single cytokine, IFN-γ. These observations may provide the basis for a new approach to inhibiting GVHD while preserving GVL effects of alloreactivity.

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4651-4660 ◽  
Author(s):  
Yong-Guang Yang ◽  
Justin J. Sergio ◽  
Denise A. Pearson ◽  
Gregory L. Szot ◽  
Akira Shimizu ◽  
...  

Abstract We have recently demonstrated that a single injection of 4,900 IU of interleukin-12 (IL-12) on the day of bone marrow transplantation (BMT) markedly inhibits acute graft-versus-host disease (GVHD) in a fully major histocompatibility complex plus minor antigen-mismatched BMT model (A/J → B10, H-2a → H-2b), in which donor CD4+ T cells are required for the induction of acute GVHD. We show here that donor CD8-dependent graft-versus-leukemia (GVL) effects against EL4 (H-2b) leukemia/lymphoma can be preserved while GVHD is inhibited by IL-12 in this model. In mice in which IL-12 mediated a significant protective effect against GVHD, marked GVL effects of allogeneic T cells against EL4 were observed. GVL effects against EL4 depended on CD8-mediated alloreactivity, protection was not observed in recipients of either syngeneic (B10) or CD8-depleted allogeneic spleen cells. Furthermore, we analyzed IL-12–treated recipients of EL4 and A/J spleen cells which survived for more than 100 days. No EL4 cells were detected in these mice by flow cytometry, tissue culture, adoptive transfer, necropsies, or histologic examination. Both GVL effects and the inhibitory effect of IL-12 on GVHD were diminished by neutralizing anti–interferon-γ (IFN-γ) monoclonal antibody. This study demonstrates that IL-12–induced IFN-γ production plays a role in the protective effect of IL-12 against GVHD. Furthermore, IFN-γ is involved in the GVL effect against EL4 leukemia, demonstrating that protection from CD4-mediated GVHD and CD8-dependent anti-leukemic activity can be provided by a single cytokine, IFN-γ. These observations may provide the basis for a new approach to inhibiting GVHD while preserving GVL effects of alloreactivity.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

Abstract We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


Blood ◽  
1994 ◽  
Vol 83 (9) ◽  
pp. 2560-2569 ◽  
Author(s):  
M Sykes ◽  
MW Harty ◽  
GL Szot ◽  
DA Pearson

We have recently shown that a short course of high-dose interleukin-2 (IL-2) can markedly inhibit the graft-versus-host disease (GVHD)- promoting activity of donor CD4+ T cells. The difficulty in dissociating GVHD-promoting from graft-versus-leukemia (GVL) effects of alloreactive donor T cells currently prevents clinical bone marrow transplantation (BMT) from fulfilling its full potential. To test the capacity of IL-2 treatment to promote such a dissociation, we have developed a new murine transplantable acute myelogenous leukemia model using a class II major histocompatibility complex-positive BALB/c Moloney murine leukemia virus-induced promonocytic leukemia, 2B-4–2. BALB/c mice receiving 2.5 x 10(5) 2B-4–2 cells intravenously 1 week before irradiation and syngeneic BMT died from leukemia within 2 to 4 weeks after BMT. Administration of syngeneic spleen cells and/or a 2.5- day course of IL-2 treatment alone did not inhibit leukemic mortality. In contrast, administration of non-T-cell-depleted fully allogeneic B10 (H-2b) spleen cells and T-cell-depleted B10 marrow led to a significant delay in leukemic mortality in IL-2-treated mice. In these animals GVHD was inhibited by IL-2 treatment. GVL effects were mediated entirely by donor CD4+ and CD8+ T cells. Remarkably, IL-2 administration did not diminish the magnitude of the GVL effect of either T-cell subset. This was surprising, because CD4-mediated GVHD was inhibited in the same animals in which CD4-mediated GVL effects were not reduced by IL-2 treatment. These results suggest a novel mechanism by which GVHD and GVL effects of a single unprimed alloreactive T-cell subset can be dissociated; different CD4 activities promote GVHD and GVL effects, and the former, but not the latter activities are inhibited by treatment with IL-2.


Blood ◽  
2002 ◽  
Vol 99 (11) ◽  
pp. 4207-4215 ◽  
Author(s):  
Yong-Guang Yang ◽  
Jin Qi ◽  
Min-Guang Wang ◽  
Megan Sykes

The graft-versus-leukemia (GVL) effects and graft-versus-host disease (GVHD)–inducing activity of CD8 T cells was compared in murine recipients of wild-type (WT) or interferon γ (IFN-γ)–deficient (GKO) allogeneic donor cells. CD8 T cells (or CD4-depleted splenocytes) from GKO donor mice induced more severe GVHD in lethally irradiated allogeneic recipients compared to the same cell populations from WT donors. Consistent with GVHD severity, donor CD8 T-cell expansion in allogeneic recipients was augmented in the absence of IFN-γ. These results demonstrate that IFN-γ does not stimulate but instead down-modulates GVHD induced by donor CD8 T cells. Remarkably, antihost lymphohematopoietic reactions, including GVL effects against host leukemia/lymphoma cells, of CD8 T cells correlated inversely with their GVHD-inducing activity, and those of GKO donors were markedly weaker than those mediated by WT donor CD8 T cells. These data show for the first time that GVHD-inducing activity and GVL effects of allogeneic CD8 T cells can be separated by a single cytokine, IFN-γ.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingxiao Song ◽  
Xiaoning Wang ◽  
Xiwei Wu ◽  
Tae Hyuk Kang ◽  
Hanjun Qin ◽  
...  

AbstractEfforts to improve the prognosis of steroid-resistant gut acute graft-versus-host-disease (SR-Gut-aGVHD) have suffered from poor understanding of its pathogenesis. Here we show that the pathogenesis of SR-Gut-aGVHD is associated with reduction of IFN-γ+ Th/Tc1 cells and preferential expansion of IL-17−IL-22+ Th/Tc22 cells. The IL-22 from Th/Tc22 cells causes dysbiosis in a Reg3γ-dependent manner. Transplantation of IFN-γ-deficient donor CD8+ T cells in the absence of CD4+ T cells produces a phenocopy of SR-Gut-aGVHD. IFN-γ deficiency in donor CD8+ T cells also leads to a PD-1-dependent depletion of intestinal protective CX3CR1hi mononuclear phagocytes (MNP), which also augments expansion of Tc22 cells. Supporting the dual regulation, simultaneous dysbiosis induction and depletion of CX3CR1hi MNP results in full-blown Gut-aGVHD. Our results thus provide insights into SR-Gut-aGVHD pathogenesis and suggest the potential efficacy of IL-22 antagonists and IFN-γ agonists in SR-Gut-aGVHD therapy.


Blood ◽  
2017 ◽  
Vol 129 (20) ◽  
pp. 2737-2748 ◽  
Author(s):  
Qingrong Huang ◽  
Shan He ◽  
Yuanyuan Tian ◽  
Yuting Gu ◽  
Pan Chen ◽  
...  

Key Points Ezh2 requires Hsp90 to maintain Ezh2 protein stability and function in alloreactive T cells. Pharmacological inhibition of Hsp90 destabilizes Ezh2 protein in alloreactive T cells and reduces GVHD but preserves graft-versus-leukemia effects.


2015 ◽  
Vol 23 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Jan J Melenhorst ◽  
Paul Castillo ◽  
Patrick J Hanley ◽  
Michael D Keller ◽  
Robert A Krance ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document