scholarly journals IL-22-dependent dysbiosis and mononuclear phagocyte depletion contribute to steroid-resistant gut graft-versus-host disease in mice

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingxiao Song ◽  
Xiaoning Wang ◽  
Xiwei Wu ◽  
Tae Hyuk Kang ◽  
Hanjun Qin ◽  
...  

AbstractEfforts to improve the prognosis of steroid-resistant gut acute graft-versus-host-disease (SR-Gut-aGVHD) have suffered from poor understanding of its pathogenesis. Here we show that the pathogenesis of SR-Gut-aGVHD is associated with reduction of IFN-γ+ Th/Tc1 cells and preferential expansion of IL-17−IL-22+ Th/Tc22 cells. The IL-22 from Th/Tc22 cells causes dysbiosis in a Reg3γ-dependent manner. Transplantation of IFN-γ-deficient donor CD8+ T cells in the absence of CD4+ T cells produces a phenocopy of SR-Gut-aGVHD. IFN-γ deficiency in donor CD8+ T cells also leads to a PD-1-dependent depletion of intestinal protective CX3CR1hi mononuclear phagocytes (MNP), which also augments expansion of Tc22 cells. Supporting the dual regulation, simultaneous dysbiosis induction and depletion of CX3CR1hi MNP results in full-blown Gut-aGVHD. Our results thus provide insights into SR-Gut-aGVHD pathogenesis and suggest the potential efficacy of IL-22 antagonists and IFN-γ agonists in SR-Gut-aGVHD therapy.

2014 ◽  
Vol 20 (2) ◽  
pp. 192-201 ◽  
Author(s):  
Elizabeth O. Stenger ◽  
Brian R. Rosborough ◽  
Lisa R. Mathews ◽  
Huihui Ma ◽  
Markus Y. Mapara ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4651-4660 ◽  
Author(s):  
Yong-Guang Yang ◽  
Justin J. Sergio ◽  
Denise A. Pearson ◽  
Gregory L. Szot ◽  
Akira Shimizu ◽  
...  

We have recently demonstrated that a single injection of 4,900 IU of interleukin-12 (IL-12) on the day of bone marrow transplantation (BMT) markedly inhibits acute graft-versus-host disease (GVHD) in a fully major histocompatibility complex plus minor antigen-mismatched BMT model (A/J → B10, H-2a → H-2b), in which donor CD4+ T cells are required for the induction of acute GVHD. We show here that donor CD8-dependent graft-versus-leukemia (GVL) effects against EL4 (H-2b) leukemia/lymphoma can be preserved while GVHD is inhibited by IL-12 in this model. In mice in which IL-12 mediated a significant protective effect against GVHD, marked GVL effects of allogeneic T cells against EL4 were observed. GVL effects against EL4 depended on CD8-mediated alloreactivity, protection was not observed in recipients of either syngeneic (B10) or CD8-depleted allogeneic spleen cells. Furthermore, we analyzed IL-12–treated recipients of EL4 and A/J spleen cells which survived for more than 100 days. No EL4 cells were detected in these mice by flow cytometry, tissue culture, adoptive transfer, necropsies, or histologic examination. Both GVL effects and the inhibitory effect of IL-12 on GVHD were diminished by neutralizing anti–interferon-γ (IFN-γ) monoclonal antibody. This study demonstrates that IL-12–induced IFN-γ production plays a role in the protective effect of IL-12 against GVHD. Furthermore, IFN-γ is involved in the GVL effect against EL4 leukemia, demonstrating that protection from CD4-mediated GVHD and CD8-dependent anti-leukemic activity can be provided by a single cytokine, IFN-γ. These observations may provide the basis for a new approach to inhibiting GVHD while preserving GVL effects of alloreactivity.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1311-1311
Author(s):  
Corinna Leng ◽  
Cuiling Li ◽  
Judy Ziegler ◽  
Anna Lokshin ◽  
Suzanne Lentzsch ◽  
...  

Abstract Histone deacetylase (HDAC) inhibitors have been shown to reduce development of graft versus host disease [GVHD] following allogeneic bone marrow transplantation [BMT]. Administration of the HDAC inhibitor suberonylanilide hydroxamic acid [SAHA] resulted in a significantly reduced GVHD-dependent mortality following fully MHC-mismatched allogeneic BMT. Median Survival Time (MST) for vehicle and SAHA-treated mice were 7.5 days and 38 days respectively. However, SAHA treatment did not affect T cell activation nor T cell expansion in vitro and in vivo as determined by MLR assays, phenotypic analysis of donor T cells with regard to expression of the CD25 activation antigen and calculation of donor CD4+ and CD8+ T cell numbers on days +3 and +6 post-BMT. Thus, SAHA treatment was not able to inhibit the strong upregulation of CD25 antigen on CD8+ T cells observed during induction of GVHD on days +3 and +6 post-BMT. We therefore focused on the effects of SAHA treatment on efferent immune effects including cytokine secretion and intracellular signaling events in vitro and in vivo following GVHD induction. SAHA treatment broadly inhibited lipopolysaccharide [LPS] and allo-antigen-induced cytokine/chemokine secretion in vitro like MIP-1-α, IP-10, IFN-γ, TNF-α and IL-6 and led also to a significant decrease in IFN-γ and TNF-α levels in vivo following induction of GVHD. Concomitantly, SAHA treatment inhibited phosphorylation of STAT1 and STAT3 in response to LPS and allo-activation in vitro. Furthermore, analysis of liver tissue and spleens from SAHA-treated animals with GVHD showed a significant decrease in phosphorylated STAT1. In contrast SAHA treatment had only moderate effects on p38 or ERK1,2 Mitogen-activated Protein Kinase (MAPK) pathway underscoring the relevance of the inhibition of the STAT1 pathway. In conclusion, GVHD is associated with a strong induction of phosphorylation of STAT1 in the liver and spleen and SAHA-dependent reduction of GVHD is associated with systemic and local inhibition of pSTAT1 and modulation of the inflammatory cytokine milieu during the efferent immune response.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3204-3204
Author(s):  
Nainong Li ◽  
Chunyan Zhang ◽  
Chia-Lei Lin ◽  
Bill McCulloch ◽  
John Wright ◽  
...  

Abstract Hematopoietic cell transplantation (HCT) is a curative therapy for hematological malignancies as well as refractory autoimmune diseases. However, graft versus host disease (GVHD) remains a major obstacle in classical HCT, where recipients are usually conditioned with total body irradiation or high dose chemotherapy. We recently reported that donor CD8+ T cells facilitated engraftment and mediated graft versus leukemia (GVL) without causing graft versus host disease (GVHD) in young (6–8 weeks old) MHC-mismatched mouse recipients conditioned with anti-CD3 mAb (Blood 2005). Thereafter, we observed that anti-CD3 conditioning alone was not sufficient for induction of chimerism in old (>12 weeks) recipients, due to the higher percentage of residual host CD8+ T cells in the old recipients. Romidepsin (Desipeptide), a histone deacetylase inhibitor, was reported to induce apoptosis of human T cell lymphoma lines. We hypothesize that depsipeptide will induce the apoptosis of anti-CD3 activated proliferating T cells, and that conditioning with a combination of anti-CD3 and depsipeptide will markedly reduce the residual host T cells and allow donor stem cell engraftment. To test our hypothesis, we first added Romidepsin (1.25–10 ng/ml) to cultures of T cells with or without anti-CD3 stimulation. We found that, although Romidepsin showed no effect on un-stimulated T cells, it augmented apoptosis of anti-CD3 activated T cells in a dose dependent manner, and the maximum augmentation was 5 fold. In addition, when Romidepsin (1.25–10 ng/ml) was added to a culture of mixed lymphocyte reaction (MLR), we found that it suppressed MLR in a dose dependent manner also, and the maximum suppression was greater than 98%. Second, old (> 12 weeks) BALB/c recipients were conditioned with one I.V. injection of anti-CD3 (20μg/g) and three I.P. injections (every other day) of Romidepsin at a dose of 0.4 μg/g. 7 days after anti-CD3 injection, recipients were injected with donor bone marrow cells (100×106) and CD4+- T depleted spleen (CD4−-SPL) cells (100×106). CD4−-SPL cells were injected again 7 days later. We found that, 4 weeks after HCT, 7/8 of the recipients conditioned with a combination of anti-CD3 and Romidepsin but only 1/8 of the recipients conditioned with anti-CD3 alone became chimeric. The recipients showed healthy appearance without signs of GVHD. The results are combined from two replicate experiments. This radiation free and GVHD preventive conditioning regimen may provide a novel approach for clinical HCT.


2001 ◽  
Vol 194 (10) ◽  
pp. 1433-1440 ◽  
Author(s):  
Pavan Reddy ◽  
Takanori Teshima ◽  
Mark Kukuruga ◽  
Rainer Ordemann ◽  
Chen Liu ◽  
...  

Interleukin (IL)-18 is a recently discovered cytokine that modulates both T helper type 1 (Th1) and Th2 responses. IL-18 is elevated during acute graft-versus-host disease (GVHD). We investigated the role of IL-18 in this disorder using a well characterized murine bone marrow transplantation (BMT) model (B6 → B6D2F1). Surprisingly, blockade of IL-18 accelerated acute GVHD-related mortality. In contrast, administration of IL-18 reduced serum tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS) levels, decreased intestinal histopathology, and resulted in significantly improved survival (75 vs. 15%, P < 0.001). Administration of IL-18 attenuated early donor T cell expansion and was associated with increased Fas expression and greater apoptosis of donor T cells. The administration of IL-18 no longer protected BMT recipients from GVHD when Fas deficient (lpr) mice were used as donors. IL-18 also lost its ability to protect against acute GVHD when interferon (IFN)-γ knockout mice were used as donors. Together, these results demonstrate that IL-18 regulates acute GVHD by inducing enhanced Fas-mediated apoptosis of donor T cells early after BMT, and donor IFN-γ is critical for this protective effect.


2021 ◽  
Vol 30 ◽  
pp. 096368972110337
Author(s):  
Xi Sun ◽  
Qiaomei He ◽  
Jun Yang ◽  
Andi Wang ◽  
Fang Zhang ◽  
...  

Acute graft-versus-host disease (aGVHD) is one of the most common complications of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Janus kinase (JAK) inhibitors are considered as reliable and promising agents for patients with aGVHD. The prophylactic and therapeutic effects of SHR0302, a novel JAK inhibitor, were evaluated in aGVHD mouse models. The overall survival (OS), progression-free survival (PFS), bodyweight of mice, GVHD scores were observed and recorded. The bone marrow and spleen samples of diseased model mice or peripheral blood of patients were analyzed. SHR0302 could prevent and reverse aGVHD in mouse models with preserving graft-versus-tumor effect. Functionally, SHR0302 improved the OS and PFS, restored bodyweight, reduced GVHD scores, and reduced immune cells infiltrated in target tissues. SHR0302 treatment also enhanced the hematopoietic reconstruction compared to the control group. Mechanistically, our results suggested that SHR0302 could inhibit the activation of T cells and modulate the differentiation of helper T (Th) cells by reducing Th1 and increasing regulatory T (Treg) cells. In addition, SHR0302 decreased the expression of chemokine receptor CXCR3 on donor T cells and the secretion of cytokines or chemokines including interleukin (IL)-6, interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), CXCL10, etc. thereby destroying the IFN-γ/CXCR3/CXCL10 axis which promotes the progression of GVHD. Besides, SHR0302 decreased the phosphorylation of JAK and its downstream STATs, AKT and ERK1/2, which ultimately regulated the activation, proliferation, and differentiation of lymphocytes. Experiments on primary cells from aGVHD patients also confirmed the results. In summary, our results indicated that JAK inhibitor SHR0302 might be used as a novel agent for patients with aGVHD.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 150-150
Author(s):  
Ludovic Belle ◽  
Kimberle A. Agle ◽  
Vivian Zhou ◽  
Vanessa Yuan ◽  
Jie Sun ◽  
...  

Abstract The interleukin-6 (IL-6) cytokine superfamily (i.e. IL-6, IL-12, and IL-23) plays a major role in the modulation of inflammatory and regulatory pathways during graft versus host disease (GVHD). IL-27, a recently discovered member of this family, is a heterodimeric cytokine that is composed of the p28 and EBI3 subunits and signals through a heterodimeric receptor composed of WSX-1 and gp130. Notably, IL-6 also uses gp130 as a signaling component which biologically links IL-27 and IL-6. IL-27 has been shown to have opposing proinflammatory and immunoregulatory effects, but its role in GVHD is not well understood. To define the functional significance of IL-27, lethally irradiated Balb/c (H-2d) mice were transplanted with C57BL/6J (H-2b) BM and spleen cells, and then treated with an anti-IL-27p28-specific antibody on days 0 and +6. p28 antibody-treated animals had significantly improved weight recovery and overall survival (47% versus 0% survival at day 60, p=0.002), as well as reduced numbers of proinflammatory CD4+ and CD8+ IFN-γ+ T cells in GVHD target organs, when compared to isotype control antibody-treated mice. A similar outcome was observed in an MHC-matched, minor antigen disparate model (B6→Balb.B), indicating that this was not a strain-specific phenomenon. Given the similarities between IL-6 and IL-27, we examined whether blockade of IL-27 promoted regulatory T cell (Treg) reconstitution as has been observed with inhibition of IL-6 signaling. Recipients transplanted with BM grafts from B6 Foxp3EGFP reporter animals and treated with p28 antibody had a significant increase in the number of CD4+ nTregs, CD4+ iTregs and CD8+ iTregs in GVHD target organs, indicating that blockade of IL-27 augmented global Treg reconstitution. In fact, inhibition of IL-27 was more effective at augmenting Treg reconstitution than comparable antibody blockade of IL-6. To further elucidate the role of IL-27, we employed transgenic IL-27−/− and IL-27R−/− animals to dissect the relevant contributions of donor and recipient populations. Paradoxically, we observed that transplantation with IL-27−/− donor grafts exacerbated GVHD mortality and augmented accumulation of proinflammatory T cells, whereas transplantation of recipient IL-27−/− mice with wild type grafts had no effect on transplant outcomes. This discordance between antibody-based and genetic studies was unexpected and led us to consider whether there were steady state alterations in T cells from IL-27−/− animals that biased these cells towards a proinflammatory phenotype. To that end, we observed that naive CD8+ T cells from IL-27−/− mice had greater IFN-γ production than wild type cells after in vitro polyclonal stimulation and CD4+ nTregs from these animals had diminished expression of CXCR3 which is critical for Treg trafficking into inflamed tissue sites. Thus, the lack of endogenous IL-27 resulted in intrinsic immune dysregulation which led to an exacerbation of GVHD after transfer of these T cells into recipients. To resolve this paradox, we employed IL-27R−/− (WSX-1−/−) mice and demonstrated that mice transplanted with IL-27R−/− grafts had enhanced weight recovery and survival providing confirmation that blockade of IL-27 signaling reduced GVHD. In addition, using IL-27R−/− Foxp3EGFP reporter mice, we observed increased frequencies and numbers of CD4+ and CD8+ Foxp3+ T cells in mice reconstituted with IL-27R−/− grafts, confirming results observed with p28 antibody blockade. Since IL-10 is a mechanism by which CD4+ Tregs suppress GVHD and IL-27 has been shown to enhance T cell-derived IL-10 secretion in nontransplant models, we examined whether IL-27 blockade adversely affected IL-10 production by Tregs. Recipients transplanted with marrow grafts from IL-10.BitFoxp3EGFP dual reporter animals and treated with p28 antibody had a significant reduction in the frequency of IL-10-producing conventional CD4+ and CD8+ T cells in GVHD target organs. Notably, however, there was no difference in the frequency of CD4+ Foxp3+ IL-10+ T cells, indicating that blockade of IL-27 signaling preferentially affected conventional T cells and had no adverse effect on CD4+ Foxp3+ T cell-derived IL-10 production. In summary, these studies demonstrate that blockade of IL-27 signaling potently augments Treg reconstitution leading to a reduction in the severity of GVHD and may therefore represent a novel strategy to reduce mortality from this disease in man. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1095-1095
Author(s):  
Taiga Kuroi ◽  
Sachiyo Okamoto ◽  
Kyosuke Saeki ◽  
Yujin Kobayashi ◽  
Hisakazu Nishimori ◽  
...  

Abstract Chronic graft-versus-host disease (GVHD) remains a major cause of late death and morbidity following allogeneic hematopoietic cell transplantation. Recently, in addition to Th2 cells, Th1 and Th17 cells have been shown to contribute to chronic GVHD progression. IL-12 induces Th1 cells and IL-23 plays a role in stabilizing and/or amplifying Th17 cells as well as in inducing IFN-γ/IL-17 double-producing cells. Because monoclonal antibody (mAb) targeting the p40 subunit common to both IL-12 and IL-23 can inhibit both IL-12 and IL-23 receptor-mediated signaling, we investigated the effects of anti-p40 mAb on a well-defined chronic GVHD mice model: B10.D2 (H-2d)→Balb/c (H-2d). Sublethally irradiated BALB/c mice were transplanted with 2×106 spleen T cells and 8×106 TCD-BM cells from B10.D2 mice. Full donor chimerism was recognized. Anti-p40 mAb was injected peritoneally on every third day from day 0 of BMT. We found that anti-p40 mAb significantly ameliorated the clinical score compared with the controls (P < 0.05). Histopathological examination of the skin on day 28 showed significantly reduced chronic GVHD damage in anti-p40 mAb-treated animals (2.8 ± 0.4 vs. 6.0± 0.3, P < 0.01). Anti-p40 mAb was injected intraperitoneally to mice from day 15 of BMT, when mice had just developed clinical signs of chronic GVHD, and anti-p40 mAb significantly improved the clinical scores (P < 0.05). Cells isolated from PLNs were harvested on day 28 after BMT and analyzed for cytokine expression. Intracellular staining revealed that IFN γ single positive (IL-17-) and IFN γ/IL-17 double-positive cells were suppressed in anti-p40 mAb-treated allogeneic recipients compared with control recipients (38±9% vs. 58±8%, P=0.1) (1.5±0.2% vs. 4.0±0.4%, P=0.0003). The cytokine levels of IFN γ and IL-17 were also decreased in serum from anti-p40 mAb-treated allogeneic recipients (IFN γ; 10.0±0.6 pg/ml vs. 35±7 pg/ml, P=0.03, IL-17; 2.8 pg/ml vs. 7.5±2 pg/ml, P=0.2). Since IFN γ/IL-17 double-positive cells are enriched in the target organs of several autoimmune disease models, it has been suggested that these double producers are particularly pathogenic in tissue inflammation and autoimmunity. These double-positive cells show higher expression of T-bet and lower expression of ROR γt than IL-17 single-positive T cells. Therefore, we examined ROR γt and T-bet expression in donor IL-17+ CD4+ T cells isolated from PLNs harvested on day 28 after BMT. Anti-p40 mAb-treated recipients displayed marginally higher ROR γt expression than control-treated allogeneic recipients (4.7±0.6% vs. 3.2±0.5%, P = 0.08). By contrast, anti-p40 mAb-treated recipients showed significantly lower T-bet expression than controls (0.77±0.2% vs. 1.6±0.3%, P = 0.03). This reduction in T-bet expression was associated with IL-22 production by T cell from anti-p40 mAb-treated recipients (42±18 pg/ml vs. 110±17 pg/ml, P = 0.03). The levels of IL-22 were also decreased in serum from anti-p40 mAb-treated allogeneic recipients 28 days after BMT (19±5 pg/ml vs. 206±78 pg/ml, P = 0.04). These results suggested that anti-p40 mAb attenuated chronic GVHD via suppression of IFN-γ/IL-17-producing cells. Moduration of the IL-12/IL-23 pathway may represent a new strategy for the treatment of chronic GVHD and anti-p40 which is clinically available as ustekinumab, might be promising therapeutic agents for chronic GVHD. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document