scholarly journals Suppression of Cell Proliferation and the Expression of abcr-abl Fusion Gene and Apoptotic Cell Death in a New Human Chronic Myelogenous Leukemia Cell Line, KT-1, by Interferon-α

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 641-648 ◽  
Author(s):  
Kohsuke Yanagisawa ◽  
Hayato Yamauchi ◽  
Masahiko Kaneko ◽  
Hidehisa Kohno ◽  
Hitoshi Hasegawa ◽  
...  

Abstract A new human leukemia cell line, KT-1, was established from a patient in the blastic crisis phase of chronic myelogenous leukemia (CML). This cell line had a positive reaction for intracytoplasmic myeloperoxidase and two Philadelphia chromosomes (Ph1) [t(9;22)(q34;q11)] and lacked normal copies of chromosomes 9 and 22. Molecular characterization of the breakpoint in the t(9;22)(q34;q11) showed that KT-1 had a bcr-2/abl-2 splice junction. When the KT-1 cells were cultured with interferon (IFN)-α or IFN-γ, the growth of the cells were dose-dependently suppressed. IFN-α and IFN-γ exerted synergistic suppressive effects on the growth of KT-1 cells. Furthermore, IFN-α suppressed the expression of the bcr-ablfusion gene in KT-1 cells, and induced G1 cell-cycle arrest and apoptotic cell death. The KT-1 cell line should be a valuable tool for studying the molecular mechanism of the suppression of Ph1clone cells from CML by IFN.

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 641-648
Author(s):  
Kohsuke Yanagisawa ◽  
Hayato Yamauchi ◽  
Masahiko Kaneko ◽  
Hidehisa Kohno ◽  
Hitoshi Hasegawa ◽  
...  

A new human leukemia cell line, KT-1, was established from a patient in the blastic crisis phase of chronic myelogenous leukemia (CML). This cell line had a positive reaction for intracytoplasmic myeloperoxidase and two Philadelphia chromosomes (Ph1) [t(9;22)(q34;q11)] and lacked normal copies of chromosomes 9 and 22. Molecular characterization of the breakpoint in the t(9;22)(q34;q11) showed that KT-1 had a bcr-2/abl-2 splice junction. When the KT-1 cells were cultured with interferon (IFN)-α or IFN-γ, the growth of the cells were dose-dependently suppressed. IFN-α and IFN-γ exerted synergistic suppressive effects on the growth of KT-1 cells. Furthermore, IFN-α suppressed the expression of the bcr-ablfusion gene in KT-1 cells, and induced G1 cell-cycle arrest and apoptotic cell death. The KT-1 cell line should be a valuable tool for studying the molecular mechanism of the suppression of Ph1clone cells from CML by IFN.


ChemInform ◽  
2010 ◽  
Vol 41 (37) ◽  
pp. no-no
Author(s):  
Takashi Kikuchi ◽  
Masatoshi Nihei ◽  
Hisashi Nagai ◽  
Hidekuni Fukushi ◽  
Keiichi Tabata ◽  
...  

2010 ◽  
Vol 58 (4) ◽  
pp. 568-571 ◽  
Author(s):  
Takashi Kikuchi ◽  
Masatoshi Nihei ◽  
Hisashi Nagai ◽  
Hidekuni Fukushi ◽  
Keiichi Tabata ◽  
...  

2005 ◽  
Vol 219 (1) ◽  
pp. 49-55 ◽  
Author(s):  
J FERNANDES ◽  
R WEINLICH ◽  
R OLIVEIRACASTILHO ◽  
M COELHOKAPLAN ◽  
G AMARANTEMENDES ◽  
...  

Blood ◽  
1975 ◽  
Vol 45 (3) ◽  
pp. 321-334 ◽  
Author(s):  
CB Lozzio ◽  
BB Lozzio

Abstract A cell-line derived from a patient with chronic myelogenous leukemia (CML) is described. The new cell-line, which has over 175 serial passanges in a 3 1/2-yr period, has the following characteristics: (1) CML cells started to proliferate actively since they were first incubated in culture media. A threefold increase in the total number of cells was observed during the first seven passages; the cell population increased by a factor of 10 to 20 every 7 days from passage 8 through 85; from 20 to 40 times from passage 86 through 150, and more than 40 times after 150 passages. (2) The majority of the nononucleated cells are undifferentiated blasts. (3) The karyotype of all the cells examined show the Philadelphia (Ph1) chromosome and a long acrocentric marker plus aneuploidy. The Giemsa-banding studies identified the Ph1 chromosome as a terminal deletion of the long arm of chromosome 22:del(22)(q12) and the long acrocentric marker as an unbalanced reciprocal translocation of one chromosome 17 and the long arm of one chromosome 15. (4) The CML cells do not produce immunoglobulins, are free of mycoplasma, Epstein-Barr virus, and herpes-like virus particles. (5) CML cells have no alkaline phosphatase and myeloperoxidase activities and did not engulf inert particles. (6) Cultured CML cells provide a constant source of a specific antigen. This CML cell-line represents a unique source of CML cells with meaningful indicators of malignancy for clinical and experimental studies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4675-4675
Author(s):  
Seiichi Okabe ◽  
Testuzo Tauchi ◽  
Akihiro Nakajima ◽  
Goro Sashida ◽  
Masahiki Sumi ◽  
...  

Abstract Chronic myelogenous leukemia (CML) results from transformation of hematopoietic cells by the BCR/ABL gene. Although high rates of hematologic responses to imatinib therapy, the acquired resistance to imatinib has been recognized as a major problem in the treatment of CML Histone deacetylases (HDACs) and histone acetyltransferases (HATs) regulate gene expression and cell growth. Recently, HDAC inhibitors have known as a new class of anti-cancer drugs. One of the HDAC inhibitor, FK228 (FR901228, depsipeptide) is now doing the clinical trial for the treatment of patients, such as peripheral T-cell lymphoma, but there was not known to the CML. In this study, we used the TF-1 BCR-ABL cell line, which were transfected BCR/ABL gene to the leukemia cell line, TF-1. We show here that FK228 potently induced apoptosis of TF-1 BCR-ABL cells, compare to the parental cell line, TF-1, in a dose and time depend fashion. BCR-ABL, intracellular molecular chaperone, heat shock protein 90 (HSP90), and p53 which regulate cell cycle, were acetylated after FK228 treatment, but not glycogen synthase kinase-3 β(GSK-3β) and signal-transducing activators of transcription 5 (STAT5). Histone H4 is also acetylated after FK228 treatment. In a cell cycle analysis, TF-1 BCR-ABL cells were stopped at G2-M phase after FK228 treatment. The activity of MAPK and Src kinases were blocked after FK228 treatment in a time and dose depend fashion, but p38 was activated. Inhibitor of apoptosis proteins (c-IAPs) have prevented cell death by inhibiting effectors caspases. IAPs were inhibited by FK228 and caspase3, caspase9 and poly (ADP-ribose) polymerase (PARP) were activated in a time and dose depend manner. Histone acetylation and caspase activitation were not blocked by treatment of p38 inhibitor, SB203580. Our study supports the future clinical trial of FK228 in the management of CML patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 776-776
Author(s):  
Xin Liu ◽  
Aijun Liao ◽  
Hong-Gang Wang ◽  
Dhimant Desai ◽  
Shantu Amin ◽  
...  

Abstract Abstract 776 Natural kill cell large granular lymphocytic (NK-LGL) leukemia is a fatal disorder with death occurring in days to weeks following diagnosis. There is no known curative therapy for this disease. Therefore, there is an urgent unmet need for development of new therapeutics for this deadly leukemia. Fischer F344 rat LGL leukemia model has been established as an important experimental model for the study of NK-LGL leukemia progression and closely resembles human aggressive NK-LGL leukemia exhibiting clonal expansion of CD3-CD8a+ lymphocytes. FTY720, a new immunosuppressant, has been studied for its putative anti-cancer properties in the recent years. At four weeks after transplantation of leukemic LGL cell line, the rats displayed early signs of leukemia, including weight loss, rough hair coat and increased level of neutrophils. By week 5, circulating blasts, anemia, thrombocytopenia, and splenomegaly were observed. These leukemic rats were then injected intraperitoneally with 4.5mg/kg of FTY720 or PBS every day over a 4-week treatment period. Animals died within the next 1 to 2 weeks if treated with PBS. The median survival in PBS treated group was 41 days compared to 51 days in FTY720 treated group (Mantel-Cox test, p<0.0001). Importantly, 5 of 16 leukemic rats treated with FTY720 had maintenance of normal blood counts without circulating blasts suggesting achievement of complete clinical remission. The remaining eleven leukemic rats treated with FTY720 had a transient improvement as evidenced by reduction of white blood cell counts and elevated platelet counts after two weeks treatment. Subsequently, however, blast counts rose and animals died within the following one week. To further determine remission status, the five responsive animals were euthanized after cessation of the treatment. At necropsy, we found these rats had normal levels of CD3-CD8a+ LGL cells in the blood, marrow, and spleen. Of note, the eleven leukemic rats not achieving remission also displayed significant reduction of LGL cells in these tissues, to lesser extent. Examination of spleen sections from rats responsive to FTY720 showed normal splenic histology. In contrast, leukemic rats not achieving remission showed leukemic LGL infiltration of the red pulp and depletion of the white pulp. Interestingly, pro-apoptotic proteins Bax and Bak were dramatically increased while anti-apoptotic protein Mcl-1 was decreased in the spleens of the rats achieving remission; however, they remained unchanged in leukemic rats not achieving remission. These data indicate that in vivo therapeutic efficacy of FTY720 may be a consequence of modulation of anti-apoptosis signaling which led to resolution of leukemic cell infiltration. We then extended these studies to NK LGL from patients. Initial experiments demonstrated that FTY720 displayed dose- and time-dependent apoptotic cell death in PBMC from NK-LGL leukemia patients (CD3−CD56+>80%). In contrast, treatment with 10uM FTY720 did not induce significant cytotoxic effects in PBMC from normal donors, or normal NK cells. In addition, treatment of human and rat NK-LGL leukemia cells with FTY720 led to caspase-dependent apoptosis, generation of reactive oxygen species (ROS), and Mcl-1 degradation which did not occur at the transcriptional level. Of interest, inhibition of ROS rescued FTY720 induced apoptosis in leukemic NK cells. Moreover, efficient knockdown of Mcl-1 resulted in more than two fold increase in apoptotic cell death of NKL, a human NK-LGL leukemia cell line. Collectively, these results indicate efficacy of FTY720 in a rat model of NK LGL leukemia via production of ROS and decreased mcl-1 expression or signaling. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4336-4343 ◽  
Author(s):  
Avudaiappan Maran ◽  
Cornelius F. Waller ◽  
Jayashree M. Paranjape ◽  
Guiying Li ◽  
Wei Xiao ◽  
...  

We report an RNA targeting strategy, which selectively degrades bcr/abl mRNA in chronic myelogenous leukemia (CML) cells. A 2′,5′-tetraadenylate activator (2-5A) of RNase L was chemically linked to oligonucleotide antisense directed against either the fusion site or against the translation start sequence in bcr/abl mRNA. Selective degradation of the targeted RNA sequences was demonstrated in assays with purified RNase L and decreases of p210bcr/abl kinase activity levels were obtained in the CML cell line, K562. Furthermore, the 2-5A-antisense chimeras suppressed growth of K562, while having substantially reduced effects on the promyelocytic leukemia cell line, HL60. Findings were extended to primary CML cells isolated from bone marrow of patients. The 2-5A-antisense treatments both suppressed proliferation of the leukemia cells and selectively depleted levels of bcr/abl mRNA without affecting levels of β-actin mRNA, determined by reverse transcriptase-polymerase chain reaction (RT-PCR). The specificity of this approach was further shown with control oligonucleotides, such as chimeras containing an inactive dimeric form of 2-5A, antisense lacking 2-5A, or chimeras with altered sequences including several mismatched nucleotides. The control oligonucleotides had either reduced or no effect on CML cell growth and bcr/abl mRNA levels. These findings show that CML cell growth can be selectively suppressed by targeting bcr/abl mRNA with 2-5A-antisense for decay by RNase L and suggest that these compounds should be further explored for their potential as ex vivo purging agents of autologous hematopoietic stem cell transplants from CML patients.


Sign in / Sign up

Export Citation Format

Share Document