scholarly journals Mice Transgenic for the Human CGM6 Gene Express Its Product, the Granulocyte Marker CD66b, Exclusively in Granulocytes

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 663-672
Author(s):  
Anne-Marie Eades-Perner ◽  
John Thompson ◽  
Herman van der Putten ◽  
Wolfgang Zimmermann

The nonspecific cross-reacting antigen-95 (NCA-95/CD66b), is a member of the human carcinoembryonic antigen (CEA) family encoded by the CGM6 gene that is exclusively expressed in neutrophils and eosinophils. No murine counterpart is known to exist. We have analyzed a cosmid containing the complete CGM6 gene. The coding sequence is contained within six exons spanning a 16.5 kb region. The main transcriptional start site was mapped to a tight cluster between nucleotides -95 and -101 relative to the translational start site. As with other members of the CEA gene family, no typical TATA or CAAT-box sequences were found in the CGM6 gene. Transgenic mice were established with the cosmid insert. CD66b expression is first seen in the fetal liver on day 12.5 of mouse embryonic development, and it first appears in the bone marrow at day 17.5. Northern blot analysis showed that CD66b transcripts are confined to the bone marrow of adult mice, whereas immunohistochemistry also showed CD66b-positive granulocytes in the spleen, thymus, and lungs. FACScan analyses of bone marrow and spleen cells showed CD66b expression to be exclusive to granulocytes. Thus, all the elements necessary for regulating granulocyte-specific expression are present within this cosmid clone. These mice could provide a model for transplantation and for inflammation studies using CD66b as a granulocyte-specific marker.

Blood ◽  
1998 ◽  
Vol 91 (2) ◽  
pp. 663-672 ◽  
Author(s):  
Anne-Marie Eades-Perner ◽  
John Thompson ◽  
Herman van der Putten ◽  
Wolfgang Zimmermann

Abstract The nonspecific cross-reacting antigen-95 (NCA-95/CD66b), is a member of the human carcinoembryonic antigen (CEA) family encoded by the CGM6 gene that is exclusively expressed in neutrophils and eosinophils. No murine counterpart is known to exist. We have analyzed a cosmid containing the complete CGM6 gene. The coding sequence is contained within six exons spanning a 16.5 kb region. The main transcriptional start site was mapped to a tight cluster between nucleotides -95 and -101 relative to the translational start site. As with other members of the CEA gene family, no typical TATA or CAAT-box sequences were found in the CGM6 gene. Transgenic mice were established with the cosmid insert. CD66b expression is first seen in the fetal liver on day 12.5 of mouse embryonic development, and it first appears in the bone marrow at day 17.5. Northern blot analysis showed that CD66b transcripts are confined to the bone marrow of adult mice, whereas immunohistochemistry also showed CD66b-positive granulocytes in the spleen, thymus, and lungs. FACScan analyses of bone marrow and spleen cells showed CD66b expression to be exclusive to granulocytes. Thus, all the elements necessary for regulating granulocyte-specific expression are present within this cosmid clone. These mice could provide a model for transplantation and for inflammation studies using CD66b as a granulocyte-specific marker.


Blood ◽  
1994 ◽  
Vol 84 (10) ◽  
pp. 3385-3393 ◽  
Author(s):  
KL Block ◽  
K Ravid ◽  
QH Phung ◽  
M Poncz

Abstract Glycoprotein (GP)IIb/IIIa, an integrin complex found on the surface of platelets, is a receptor for fibrinogen and other ligands, and is involved in platelet aggregation. Because GPIIb is specifically expressed in megakaryocytes, we have studied the 52-flanking region of the rat (r) GPIIb gene as a model of a megakaryocyte-specific gene. The studies presented here used a rat marrow expression system, which allows the study of primary cells undergoing terminal differentiation into megakaryocytes. The determination of megakaryocyte-specific expression of DNA constructs was possible by immunomagnetically separating megakaryocytes from total bone marrow cells. Transient expression constructs, containing varying lengths of the 52-flanking region from -39 to -912 bp, localized a regulatory element between -460 and -439 bp upstream of the transcriptional start site. This region contains a GATA consensus binding element between -457 and -454 (GATA454). Further constructs demonstrated that this GATA binding element was indeed essential for expression. A 25-bp substitution, covering the region -450 to -426 immediately downstream of the GATA454, demonstrated that this region was essential for full expression, which suggests that this region may interact with the GATA454 site in promoting high-level lineage-specific expression. To define regulatory elements between the GATA454 and the transcriptional start site further, we tested additional constructs derived from the original -912 construct; each of which contained the GATA454 but had different 50-bp deletions from -450 to the start site. Virtually all of these constructs continued to show high-level tissue-specific expression. The deleted -150 to -101 construct had twice the level of expression of the full-length wild-type construct; therefore, this region may contain a negative regulatory element. Comparison of our data with expression studies performed with the 52-region of the human GPIIb gene using HEL cells, a cell line with some megakaryocytic properties, demonstrates significant differences, which may reflect our use of primary rate bone marrow cells. In particular, our study points to the importance of the GATA454 for high levels of GPIIb expression in developing megakaryocytes.


Blood ◽  
1994 ◽  
Vol 84 (10) ◽  
pp. 3385-3393 ◽  
Author(s):  
KL Block ◽  
K Ravid ◽  
QH Phung ◽  
M Poncz

Glycoprotein (GP)IIb/IIIa, an integrin complex found on the surface of platelets, is a receptor for fibrinogen and other ligands, and is involved in platelet aggregation. Because GPIIb is specifically expressed in megakaryocytes, we have studied the 52-flanking region of the rat (r) GPIIb gene as a model of a megakaryocyte-specific gene. The studies presented here used a rat marrow expression system, which allows the study of primary cells undergoing terminal differentiation into megakaryocytes. The determination of megakaryocyte-specific expression of DNA constructs was possible by immunomagnetically separating megakaryocytes from total bone marrow cells. Transient expression constructs, containing varying lengths of the 52-flanking region from -39 to -912 bp, localized a regulatory element between -460 and -439 bp upstream of the transcriptional start site. This region contains a GATA consensus binding element between -457 and -454 (GATA454). Further constructs demonstrated that this GATA binding element was indeed essential for expression. A 25-bp substitution, covering the region -450 to -426 immediately downstream of the GATA454, demonstrated that this region was essential for full expression, which suggests that this region may interact with the GATA454 site in promoting high-level lineage-specific expression. To define regulatory elements between the GATA454 and the transcriptional start site further, we tested additional constructs derived from the original -912 construct; each of which contained the GATA454 but had different 50-bp deletions from -450 to the start site. Virtually all of these constructs continued to show high-level tissue-specific expression. The deleted -150 to -101 construct had twice the level of expression of the full-length wild-type construct; therefore, this region may contain a negative regulatory element. Comparison of our data with expression studies performed with the 52-region of the human GPIIb gene using HEL cells, a cell line with some megakaryocytic properties, demonstrates significant differences, which may reflect our use of primary rate bone marrow cells. In particular, our study points to the importance of the GATA454 for high levels of GPIIb expression in developing megakaryocytes.


1993 ◽  
Vol 39 (2) ◽  
pp. 317-324 ◽  
Author(s):  
E R Simpson ◽  
M S Mahendroo ◽  
G D Means ◽  
M W Kilgore ◽  
C J Corbin ◽  
...  

Abstract In humans, estrogen biosynthesis occurs in several tissue sites, including ovary, placenta, adipose, and brain. Recent work from our laboratory indicates that tissue-specific expression of aromatase cytochrome P450 (P450arom), the enzyme responsible for estrogen biosynthesis, is determined, in part, by the use of tissue-specific promoters. Thus, the expression of P450arom in human ovary appears to utilize a promoter proximal to the translation start site. This promoter is not utilized in placenta; instead, the promoter used to drive aromatase expression in placenta is > or = 40 kb upstream from the translational start site. In addition, a minor promoter used in the expression of a small proportion of placental transcripts is 9 kb upstream from the start of translation. Transcripts from these promoters are also expressed in other fetal tissues, including placenta-related cells such as JEG-3 choriocarcinoma cells and hydatidiform moles and other fetal tissues such as fetal liver. In adipose tissue, on the other hand, expression of P450arom may be achieved by yet another, adipose-specific promoter. The various 5'-untranslated exons unique for expression driven by each of these promoters are spliced into a common intron/exon boundary upstream from the translational start site. This means that the protein expressed in each of the various tissue-specific sites of estrogen biosynthesis is identical.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H J Cho ◽  
C S Lee ◽  
J W Lee ◽  
H M Yang ◽  
H S Kim

Abstract Background Specific surface markers that enable monitoring of cell subsets would be valuable for establishing the conditions under which pluripotent stem cells (PSCs) differentiate into cardiac progenitor cells (CPCs) and cardiomyocytes (CMCs). Methods and results To verify whether a specific marker is expressed during heart development, we assessed its expression using the CLARITY technique. After immersion in a solution with a refractive index matching that of the CLARITY hybrid, the mouse embryo became transparent. After immunostaining the cleared embryo sample, Adgrl2 was exclusively observed in cardiac cells expressing α-SA at embryonic day E9.5 and E10.5. Our clarified 3D images and movies show that four chambers of the heart are fully developed at E10.5 but not at E9.5. At E9.5, Adgrl2 is observed at the ventricle and atrium, while Adgrl2 is present in all chambers of the heart at E10.5. Next, we performed LacZ (β-Gal) staining in heterozygous Adgrl2 KO embryos to evaluate Adgrl2 expression. As a result, LacZ staining showed that Adgrl2 was predominantly expressed in the heart during the embryonic developmental stage. Adgrl2 knockout in mice was embryonically lethal because of severe heart, but not vascular, defects. To examine the use of Adgrl2 as a bona fide CPC marker during heart development, we tracked Adgrl2 expression during early embryonic development. The heart of Adgrl2−/− embryos at E10.5 exhibited occlusion of the RV, and the expression levels of Gata4 and Nkx2.5 were not as high as those in wild-type and Adgrl2+/− embryos. Interestingly, the heart of Adgrl2−/− embryos, unlike those of wild-type and Adgrl2+/− embryos between E13.5 and E15.5 had a single ventricle revealing a ventricular septal defect. The specific expression pattern of Adgrl2 in PSC-derived cardiac lineage cells as well as in embryonic heart, adult mice, and human heart tissues. Conclusion We demonstrate that Adgrl2 plays a pivotal and functional role across all strata of the cardiomyogenic lineage, as early as the precursor stage of heart development. These findings shed light on heart development and regeneration. Acknowledgement/Funding Grants from “Strategic Center of Cell and Bio Therapy” (grant number: HI17C2085) and “Korea Research-Driven Hospital” (HI14C1277)


2020 ◽  
Vol 117 (34) ◽  
pp. 20729-20740 ◽  
Author(s):  
Xingyu Wang ◽  
Adwait Amod Sathe ◽  
Gregory R. Smith ◽  
Frederique Ruf-Zamojski ◽  
Venugopalan Nair ◽  
...  

Tissue-resident macrophages can originate from embryonic or adult hematopoiesis. They play important roles in a wide range of biological processes including tissue remodeling during organogenesis, organ homeostasis, repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized the ontogeny of skeletal muscle-resident macrophages by lineage tracing and bone marrow transplant experiments. We demonstrate that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopoietic stem cells located within the bone marrow of adult mice. Single-cell-based transcriptome analyses revealed that skeletal muscle-resident macrophages are distinctive from resident macrophages in other tissues as they express a distinct complement of transcription factors and are composed of functionally diverse subsets correlating to their origins. Functionally, skeletal muscle-resident macrophages appear to maintain tissue homeostasis and promote muscle growth and regeneration.


1999 ◽  
Vol 181 (24) ◽  
pp. 7571-7579 ◽  
Author(s):  
Jorge Membrillo-Hernández ◽  
E. C. C. Lin

ABSTRACT The adhE gene of Escherichia coli, located at min 27 on the chromosome, encodes the bifunctional NAD-linked oxidoreductase responsible for the conversion of acetyl-coenzyme A to ethanol during fermentative growth. The expression of adhEis dependent on both transcriptional and posttranscriptional controls and is about 10-fold higher during anaerobic than during aerobic growth. Two putative transcriptional start sites have been reported: one at position −292 and the other at −188 from the translational start codon ATG. In this study we show, by using several different transcriptional and translational fusions to the lacZ gene, that both putative transcriptional start sites can be functional and each site can be redox regulated. Although both start sites are NarL repressible in the presence of nitrate, Fnr activates only the −188 start site and Fis is required for the transcription of only the −292 start site. In addition, it was discovered that RpoS activatesadhE transcription at both start sites. Under all experimental conditions tested, however, only the upstream start site is active. Available evidence indicates that under those conditions, the upstream promoter region acts as a silencer of the downstream transcriptional start site. Translation of the mRNA starting at −292, but not the one starting at −188, requires RNase III. The results support the previously postulated ribosomal binding site (RBS) occlusion model, according to which RNase III cleavage is required to release the RBS from a stem-loop structure in the long transcript.


Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2359-2368 ◽  
Author(s):  
Maria Teresa Corsetti ◽  
Franco Calabi

Abstract Translocations involving the human CBFA2 locus have been associated with leukemia. This gene, originally named AML1, is a human homologue of the Drosophila gene runt that controls early events in fly embryogenesis. To clarify the role of mammalian runt products in normal and leukemic hematopoiesis, we have studied their pattern of expression in mouse hematopoietic tissues in the adult and during ontogeny using an anti-runt box antiserum. In the adult bone marrow, we found expression of runt polypeptides in differentiating myeloid cells and in B lymphocytes. Within the erythroid lineage, runt expression is biphasic, clearly present in the erythroblasts of early blood islands and of the fetal liver, but absent in the adult. Biochemical analysis by Western blotting of fetal and adult hematopoietic populations shows several runt isoforms. At least one of them appears to be myeloid specific.


Blood ◽  
1979 ◽  
Vol 54 (5) ◽  
pp. 1091-1100 ◽  
Author(s):  
JP Blanchet ◽  
J Samarut ◽  
G Mouchiroud

Abstract The production of erythrocytes bearing an “immature” antigen (Im+ cells) and a “fetal” antigen (Ft+ cells) has been studied in irradiated adult mice grafted either with fetal liver or adult bone marrow cells. The Im+ cells reach a peak 8–11 days after grafting. Ft+ cells are detected only after graft of fetal liver cells; the younger the liver, the greater the number. Since Ft+ cells are rapidly and briefly produced, they could be the progeny of erythroid-committed precursors, which are particularly numerous among fetal liver cells. Environmental factors directing the erythropoietic differentiation towards Ft+ erythrocytes in fetuses or Ft- erythrocytes in adults are proposed.


Sign in / Sign up

Export Citation Format

Share Document