scholarly journals Lineage- and Stage-Specific Expression of Runt Box Polypeptides in Primitive and Definitive Hematopoiesis

Blood ◽  
1997 ◽  
Vol 89 (7) ◽  
pp. 2359-2368 ◽  
Author(s):  
Maria Teresa Corsetti ◽  
Franco Calabi

Abstract Translocations involving the human CBFA2 locus have been associated with leukemia. This gene, originally named AML1, is a human homologue of the Drosophila gene runt that controls early events in fly embryogenesis. To clarify the role of mammalian runt products in normal and leukemic hematopoiesis, we have studied their pattern of expression in mouse hematopoietic tissues in the adult and during ontogeny using an anti-runt box antiserum. In the adult bone marrow, we found expression of runt polypeptides in differentiating myeloid cells and in B lymphocytes. Within the erythroid lineage, runt expression is biphasic, clearly present in the erythroblasts of early blood islands and of the fetal liver, but absent in the adult. Biochemical analysis by Western blotting of fetal and adult hematopoietic populations shows several runt isoforms. At least one of them appears to be myeloid specific.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3666-3666 ◽  
Author(s):  
Ling Zhao ◽  
Lemlem Alemu ◽  
Jun Cheng ◽  
Tao Zhen ◽  
Alan D. Friedman ◽  
...  

Abstract Among acute myeloid leukemia (AML) with cytogenetic abnormalities, core binding factor (CBF) leukemia acounts for 20-30% of adult AML, and 20-30% of pediatric AML. The chromosome 16 inversion (inv(16)), which results in a fusion gene CBFB -MYH11 and an encoded chimeric protein CBFβ-SMMHC (core binding factor β - smooth muscle myosin heavy chain), is observed primarily in AML subtype M4Eo. Using Cbfb-MYH11 knock-in mouse models we previously demonstrated that CBFβ-SMMHC needs its C terminal domains for leukemogenesis (Kamikubo et al, Blood 121:638, 2013). In this study we generated a new CBFB-MYH11 knock-in mouse model to determine the role of the multimerization domain at the C terminus of CBFβ-SMMHC for hematopoietic defects and leukemogenesis. Previous studies have shown that the C-terminal 29-residue assembly competent domain (ACD) is essential for multimerization of SMMHC. Within ACD, clustered point mutations in helices D and E specifically disrupts multimerization of CBFβ-SMMHC without interfering with the repression function of CBFβ-SMMHC (Zhang et al., Oncogene 25:7289, 2006). Therefore, we generated knock-in mice expressing CBFβ-SMMHC with mutated helices D and E (mDE) to study the role of the multimerization domain in vivo. Heterozygous embryos (Cbfb+/mDE) were viable and showed no defects in fetal liver definitive hematopoiesis, while homozygous embryos (CbfbmDE/mDE) showed complete blockage of definitive hematopoiesis, hemorrhage in the central nervous system and midgestation lethality, similar to the phenotype in Cbfb+/MYH11 mice and the Cbfb or Runx1 null mice. This phenotype is also similar to that in the homozygous knockin embryos expressing C-terminally-deleted CBFβ-SMMHC (Kamikubo et al, Blood 121:638, 2013). The fetal liver of E12.5 CbfbmDE/mDE embryos gave no colonies while the fetal liver of Cbfb+/mDE mice generated similar number of colonies as the WT controls. We further looked at the peripheral blood of E10.5 CbfbmDE/mDE embryos and found that the primitive hematopoiesis was not affected, while E10.5 Cbfb+/MYH11 embryos showed a developmental delay at this stage. Analysis of peripheral blood showed decreased B cell population in young adult Cbfb+/mDE mice, while the myeloid compartment was unchanged. In aged mice (>12 months), however, there was an increase of immature myeloid cells in the peripheral blood. Importantly, there was no leukemia development in the Cbfb+/mDE mice one year after ENU treatment (to induce cooperating mutations), while Cbfb+/MYH11 micedied of leukemia within 2 months of ENU treatment. Notably bone marrow cells in the Cbfb+/mDE and Cbfb+/MYH11 mice expressed their respective fusion proteins at similar levels. Overall our data suggest that the C terminal multimerization domain is required for the defects in primitive and definitive hematopoiesis caused by CBFβ-SMMHC, and the domain is essential for leukemogenesis by CBFβ-SMMHC. Further mechanistic studies of this domain may lead to new drug targets for treating inv(16) leukemia. For this purpose we have performed gene expression profiling with microarray and RNA-seq technologies, comparing gene expression changes in adult bone marrow c-Kit+ cells as well as embryonic primitive blood cells from Cbfb+/mDE and Cbfb+/MYH11 mice. Preliminary analysis indicates that the gene expression profile of the hematopoietic cells from the Cbfb+/mDE mice was much similar to that of Cbfb+/+ than Cbfb+/MYH11 mice. Validation and pathway analysis of those differentially expressed genes are ongoing and the results will be presented at the annual meeting. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3134-3143 ◽  
Author(s):  
Tsukasa Okuda ◽  
Zhongling Cai ◽  
Shouli Yang ◽  
Noel Lenny ◽  
Chuhl-joo Lyu ◽  
...  

Abstract The t(8;21)-encoded AML1-ETO chimeric product is believed to be causally involved in up to 15% of acute myelogenous leukemias through an as yet unknown mechanism. To directly investigate the role of AML1-ETO in leukemogenesis, we used gene targeting to create anAML1-ETO “knock-in” allele that mimics the t(8;21). Unexpectedly, embryos heterozygous for AML1-ETO(AML1-ETO/+) died around E13.5 from a complete absence of normal fetal liver–derived definitive hematopoiesis and lethal hemorrhages. This phenotype was similar to that seen following homozygous disruption of either AML1 orCBFβ. However, in contrast to AML1- or CBFβ-deficient embryos, fetal livers from AML1-ETO/+ embryos contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal capacity in vitro. To further document the role of AML1-ETO in these growth abnormalities, we used retroviral transduction to express AML1-ETO in murine adult bone marrow–derived hematopoietic progenitors. AML1-ETO–expressing cells were again found to have an increased self-renewal capacity and could be readily established into immortalized cell lines in vitro. Taken together, these studies suggest that AML1-ETO not only neutralizes the normal biologic activity of AML1 but also directly induces aberrant hematopoietic cell proliferation.


Blood ◽  
2012 ◽  
Vol 119 (21) ◽  
pp. 4823-4827 ◽  
Author(s):  
Karen K. Hirschi

Abstract During embryonic development, multilineage HSCs/progenitor cells are derived from specialized endothelial cells, termed hemogenic endothelium, within the yolk sac, placenta, and aorta. Whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, such as in the fetal liver and fetal bone marrow, is not known. Also unknown is whether such cells exist within the vasculature of adult bone marrow and generate hematopoietic stem cells after birth. These issues and their clinical relevance are discussed herein.


Blood ◽  
1998 ◽  
Vol 91 (9) ◽  
pp. 3134-3143 ◽  
Author(s):  
Tsukasa Okuda ◽  
Zhongling Cai ◽  
Shouli Yang ◽  
Noel Lenny ◽  
Chuhl-joo Lyu ◽  
...  

The t(8;21)-encoded AML1-ETO chimeric product is believed to be causally involved in up to 15% of acute myelogenous leukemias through an as yet unknown mechanism. To directly investigate the role of AML1-ETO in leukemogenesis, we used gene targeting to create anAML1-ETO “knock-in” allele that mimics the t(8;21). Unexpectedly, embryos heterozygous for AML1-ETO(AML1-ETO/+) died around E13.5 from a complete absence of normal fetal liver–derived definitive hematopoiesis and lethal hemorrhages. This phenotype was similar to that seen following homozygous disruption of either AML1 orCBFβ. However, in contrast to AML1- or CBFβ-deficient embryos, fetal livers from AML1-ETO/+ embryos contained dysplastic multilineage hematopoietic progenitors that had an abnormally high self-renewal capacity in vitro. To further document the role of AML1-ETO in these growth abnormalities, we used retroviral transduction to express AML1-ETO in murine adult bone marrow–derived hematopoietic progenitors. AML1-ETO–expressing cells were again found to have an increased self-renewal capacity and could be readily established into immortalized cell lines in vitro. Taken together, these studies suggest that AML1-ETO not only neutralizes the normal biologic activity of AML1 but also directly induces aberrant hematopoietic cell proliferation.


1981 ◽  
Vol 153 (1) ◽  
pp. 154-165 ◽  
Author(s):  
C J Paige ◽  
P W Kincade ◽  
L A Shinefeld ◽  
V L Sato

The emergence of functional B cells was monitored in irradiated or unirradiated CBA/N recipients of either adult bone marrow or fetal liver from CBA/HT6T6 donors. The cells that are primarily responsible for the generation of B lymphocytes, at least during the first 6 wk, are rapidly sedimenting (4.5-6 mm/h), lack surface immunoglobulin, and are found in both the adult bone marrow and the fetal liver from day 12 onward. These pre-B cells are distinct from the colony-forming unit spleen (CFU-s) as demonstrated by the following criteria: (a) absence from yolk sac (19), (b) lack of correlation between CFU-s number and the ability to generate B cells in fetal liver populations of different ages of gestation, and (c) hybridoma antibodies that significantly inhibited B cell reconstitution but have no effect on CFU-s numbers. The antigen detected by this antiserum is present on both the fetal liver and bone marrow B cell progenitor, although its expression is not restricted to the B lineage. The pre-B cells that we monitor are not homogeneous, however, as both physical and functional differences are found. These observations reinforce our thesis that committed progenitor cells for the humoral immune system are formed early in development and thereafter constitute the major precursor pool for the generation of B lymphocytes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Yu ◽  
Alejandra Vargas Valderrama ◽  
Zhongchao Han ◽  
Georges Uzan ◽  
Sina Naserian ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. Methods MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25−T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. Results We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. Conclusions These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.


1997 ◽  
Vol 177 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Yoshihiro Watanabe ◽  
Yuichi Aiba ◽  
Yoshimoto Katsura

Sign in / Sign up

Export Citation Format

Share Document