scholarly journals Azurophilic Granules of Human Neutrophilic Leukocytes Are Deficient in Lysosome-Associated Membrane Proteins but Retain the Mannose 6-Phosphate Recognition Marker

Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 1044-1058 ◽  
Author(s):  
A.-M. Cieutat ◽  
P. Lobel ◽  
J.T. August ◽  
L. Kjeldsen ◽  
H. Sengeløv ◽  
...  

During granulocyte differentiation in the bone marrow (BM), neutrophilic leukocyte precursors synthesize large amounts of lysosomal enzymes. These enzymes are sequestered into azurophilic storage granules until used days later for digestion of phagocytized microorganisms after leukocyte emigration to inflamed tissues. This azurophil granule population has previously been defined as a primary lysosome, ie, a membrane-bound organelle containing acid hydrolases that have not entered into a digestive event. In this study, azurophil granules were purified and shown to contain large amounts of mannose 6-phosphate-containing glycoproteins (Man 6-P GP) but little lysosome-associated membrane proteins (LAMP). In addition, the fine structural localization of Man 6-P GP and LAMP was investigated at various stages of maturation in human BM and blood. Man 6-P GP were present within the azurophilic granules at all stages of maturation and in typical multivesicular bodies (MVB) as well as in multilaminar compartments (MLC), identified by their content of concentric arrays of internal membranes. LAMP was absent in all identified granule populations, but was consistently found in the membranes of vesicles, MVB, and MLC. The latter compartment has not been previously described in this cell type. In conclusion, the azurophilic granules, which contain an abundance of lysosomal enzymes and Man 6-P GP, lack the LAMP glycoproteins. By current criteria, they therefore cannot be classified as lysosomes, but rather may have the functional characteristics of a regulated secretory granule. Rather, the true lysosomes of the resting neutrophil are probably the MVB and MLC. Finally, the typical “dense bodies” or mature lysosomes described in other cells are not present in resting neutrophils.

Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 1044-1058 ◽  
Author(s):  
A.-M. Cieutat ◽  
P. Lobel ◽  
J.T. August ◽  
L. Kjeldsen ◽  
H. Sengeløv ◽  
...  

Abstract During granulocyte differentiation in the bone marrow (BM), neutrophilic leukocyte precursors synthesize large amounts of lysosomal enzymes. These enzymes are sequestered into azurophilic storage granules until used days later for digestion of phagocytized microorganisms after leukocyte emigration to inflamed tissues. This azurophil granule population has previously been defined as a primary lysosome, ie, a membrane-bound organelle containing acid hydrolases that have not entered into a digestive event. In this study, azurophil granules were purified and shown to contain large amounts of mannose 6-phosphate-containing glycoproteins (Man 6-P GP) but little lysosome-associated membrane proteins (LAMP). In addition, the fine structural localization of Man 6-P GP and LAMP was investigated at various stages of maturation in human BM and blood. Man 6-P GP were present within the azurophilic granules at all stages of maturation and in typical multivesicular bodies (MVB) as well as in multilaminar compartments (MLC), identified by their content of concentric arrays of internal membranes. LAMP was absent in all identified granule populations, but was consistently found in the membranes of vesicles, MVB, and MLC. The latter compartment has not been previously described in this cell type. In conclusion, the azurophilic granules, which contain an abundance of lysosomal enzymes and Man 6-P GP, lack the LAMP glycoproteins. By current criteria, they therefore cannot be classified as lysosomes, but rather may have the functional characteristics of a regulated secretory granule. Rather, the true lysosomes of the resting neutrophil are probably the MVB and MLC. Finally, the typical “dense bodies” or mature lysosomes described in other cells are not present in resting neutrophils.


1995 ◽  
Vol 310 (2) ◽  
pp. 589-595 ◽  
Author(s):  
V Alvarez ◽  
A J Parodi ◽  
R Couso

The mannose 6-phosphate (Man6P)-dependent pathway for routing lysosomal enzymes was characterized in the hepatopancreas of the estuary crab Chasmagnatus granulata: (a) an acid alpha-L-fucosidase was purified to homogeneity from the above-mentioned organ and was shown to contain mannose-linked phosphate residues; (b) high-mannose-type oligosaccharides isolated from a protein fraction enriched in acid hydrolases were found to contain acid-labile N-acetylglucosamine (GlcNAc) residues; (c) a membrane-bound UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase was detected that phosphorylated the estuary-crab alpha-L-fucosidase and bovine uteroferrin but not bovine pancreas ribonuclease B; (d) a GlcNAc-1-phosphodiester alpha-N-acetylglucosaminidase that released GlcNAc units from GlcNAc alpha 1-P6Man alpha 1-methyl was detected in microsomal membranes of the hepatopancreas; (e) two detergent-solubilized microsomal proteins having molecular masses of 205 and 215 kDa that were retained by a Man6P-rich mannan-Sepharose column, from where they were eluted with Man6P but not with glucose 6-phosphate, were recognized by antisera raised against bovine large (215 kDa) and small (46 kDa) Man6P receptors. This is the first description of all the components of the Man6P-dependent mechanism for routing lysosomal enzymes in an invertebrate.


1968 ◽  
Vol 3 (3) ◽  
pp. 357-364
Author(s):  
C. R. HOPKINS ◽  
BRIDGET I. BAKER

In the prolactin cell of the eel adenohypophysis acid phosphatase activity occurs within the majority of the Golgi cisternae and developing secretory granules. Acid phosphatase is also present within larger membrane-bound bodies, most of which are similar to the lytic dense bodies described in other cell types. In discussing the functional significance of this enzyme distribution particular attention is paid to its association with the secretory mechanisms of the prolactin cell.


1979 ◽  
Vol 34 (1-2) ◽  
pp. 90-95 ◽  
Author(s):  
Fouad M. Fouad ◽  
D. Waldron-Edward

Abstract The results show that incubation of gastric mucosal cells from rat at pH ~4.5 or in the presence of aspirin is associated with a specific increase in the activity of some acid-hydrolases. Intracellular glycoproteins, isolated by non-degradative techniques from rat or dog fundic mucosal cells, were found to be potential bio-substrates for these acid-hydrolyses. This may suggest that cleavage of the carbohydrate moieties of the intracellular and mucosal cell wall glycoproteins is a fundamental step in the development of gastric ulceration. A model for gastric lesions is proposed and discussed in the light of the results obtained.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 726
Author(s):  
Chung-Ling Lu ◽  
Jinoh Kim

Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogenesis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases.


Sign in / Sign up

Export Citation Format

Share Document