Characterization of Siglec-5, a Novel Glycoprotein Expressed on Myeloid Cells Related to CD33

Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2123-2132 ◽  
Author(s):  
Ann L. Cornish ◽  
Sylvie Freeman ◽  
Gareth Forbes ◽  
Jian Ni ◽  
Mei Zhang ◽  
...  

Abstract We describe the characterization of siglec-5 (sialic acid-binding Ig-like lectin-5), a novel transmembrane member of the immunoglobulin superfamily, highly related to the myeloid antigen, CD33. A full-length cDNA encoding siglec-5 was isolated from a human activated monocyte cDNA library. Sequencing predicted that siglec-5 contains four extracellular immunoglobulin-like domains, the N-terminal two of which are 57% identical to the corresponding region of CD33. The cytoplasmic tail is also related to that of CD33, containing two tyrosine residues embodied in immunoreceptor tyrosine-based inhibitory motif-like motifs. The siglec-5 gene was shown to map to chromosome 19q13.41-43, closely linked to the CD33 gene. When siglec-5 was expressed on COS cells or as a recombinant protein fused to the Fc region of human IgG1, it was able to mediate sialic acid–dependent binding to human erythrocytes and soluble glycoconjugates, suggesting that it may be involved in cell-cell interactions. By using specific antibodies, siglec-5 was found to have an expression pattern distinct from that of CD33, being present at relatively high levels on neutrophils but absent from leukemic cell lines representing early stages of myelomonocytic differentiation. Western blot analysis of neutrophil lysates indicated that siglec-5 exists as a disulfide-linked dimer of approximately 140 kD. © 1998 by The American Society of Hematology.

Blood ◽  
1998 ◽  
Vol 92 (6) ◽  
pp. 2123-2132 ◽  
Author(s):  
Ann L. Cornish ◽  
Sylvie Freeman ◽  
Gareth Forbes ◽  
Jian Ni ◽  
Mei Zhang ◽  
...  

We describe the characterization of siglec-5 (sialic acid-binding Ig-like lectin-5), a novel transmembrane member of the immunoglobulin superfamily, highly related to the myeloid antigen, CD33. A full-length cDNA encoding siglec-5 was isolated from a human activated monocyte cDNA library. Sequencing predicted that siglec-5 contains four extracellular immunoglobulin-like domains, the N-terminal two of which are 57% identical to the corresponding region of CD33. The cytoplasmic tail is also related to that of CD33, containing two tyrosine residues embodied in immunoreceptor tyrosine-based inhibitory motif-like motifs. The siglec-5 gene was shown to map to chromosome 19q13.41-43, closely linked to the CD33 gene. When siglec-5 was expressed on COS cells or as a recombinant protein fused to the Fc region of human IgG1, it was able to mediate sialic acid–dependent binding to human erythrocytes and soluble glycoconjugates, suggesting that it may be involved in cell-cell interactions. By using specific antibodies, siglec-5 was found to have an expression pattern distinct from that of CD33, being present at relatively high levels on neutrophils but absent from leukemic cell lines representing early stages of myelomonocytic differentiation. Western blot analysis of neutrophil lysates indicated that siglec-5 exists as a disulfide-linked dimer of approximately 140 kD. © 1998 by The American Society of Hematology.


2014 ◽  
Vol 30 (S1) ◽  
pp. A119-A120
Author(s):  
Hung V. Trinh ◽  
Ousman Jobe ◽  
Guofen Gao ◽  
Carl R. Alving ◽  
Venigalla Rao ◽  
...  

2001 ◽  
Vol 353 (3) ◽  
pp. 483-492 ◽  
Author(s):  
Zhenbao YU ◽  
Meryem MAOUI ◽  
Liangtang WU ◽  
Denis BANVILLE ◽  
Shi-Hsiang SHEN

The sialic acid-binding immunoglobulin-like lectins (siglecs) represent a recently defined distinct subset of the immunoglobulin superfamily. By using the Src homology 2 (SH2)-domain-containing protein tyrosine phosphatase SHP-1 as bait in a yeast two-hybrid screen, we have identified a new member of the mouse siglec family, mSiglec-E. The mSiglec-E cDNA encodes a protein of 467 amino acids that contains three extracellular immunoglobulin-like domains, a transmembrane region and a cytoplasmic tail bearing two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). mSiglec-E is highly expressed in mouse spleen, a tissue rich in leucocytes. The ITIMs of mSiglec-E can recruit SHP-1 and SHP-2, two inhibitory regulators of immunoreceptor signal transduction. This suggests that the function of mSiglec-E is probably an involvement in haematopoietic cells and the immune system as an inhibitory receptor. When expressed in COS-7 cells, mSiglec-E was able to mediate sialic acid-dependent binding to human red blood cells, suggesting that mSiglec-E may function through cell–cell interactions. In comparison with the known members of the siglec family, mSiglec-E exhibits a high degree of sequence similarity to both human siglec-7 and siglec-9. The gene encoding mSiglec-E is localized in the same chromosome as that encoding mouse CD33. Phylogenetic analysis reveals that neither mouse mSiglec-E nor CD33 shows a clear relationship with any human siglecs so far identified.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e89529 ◽  
Author(s):  
Anne-Kathrin Sauer ◽  
Chi-Hui Liang ◽  
Jürgen Stech ◽  
Ben Peeters ◽  
Pascale Quéré ◽  
...  

1996 ◽  
Vol 271 (16) ◽  
pp. 9267-9272 ◽  
Author(s):  
Mary Vinson ◽  
P. Anton van der Merwe ◽  
Sørge Kelm ◽  
Andy May ◽  
E. Yvonne Jones ◽  
...  

1996 ◽  
Vol 271 (16) ◽  
pp. 9273-9280 ◽  
Author(s):  
P. Anton van der Merwe ◽  
Paul R. Crocker ◽  
Mary Vinson ◽  
A. Neil Barclay ◽  
Roland Schauer ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1466-1466
Author(s):  
Nancy Hurtado-Ziola ◽  
Justin L. Sonnenburg ◽  
Ajit Varki

Abstract The Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are a recently discovered family of mammalian glycan-binding proteins that have been shown to recognize the terminal sialic acids of glycoproteins and glycolipids. The CD33-Related Siglecs (CD33rSiglecs, namely Siglec-3, -5 through -11 and -XII in humans) are a subgroup of these molecules, which are thought to be primarily expressed on cells of the innate immune system. All CD33rSiglecs are type-1 transmembrane proteins with an N-terminal sialic acid-recognizing V-set domain followed by a variable number of C-2 set domains, a transmembrane region and a cytosolic C-terminal domain that usually has two tyrosine-based signaling motifs, one of which conforms to a canonical negative regulatory ITIM motif. Although the true function of the CD33rSiglecs has yet to be discovered, available data are most consistent with an inhibitory signaling role in the innate immune response, mediated by recognition of host sialic acids as “self”. CD33rSiglecs also interact with sialic acids on the same cell surface, typically resulting in “masking” of their sialic acid-binding sites. Our recent studies have shown that humans and non-human primates have a similar clustered localization of CD33rSiglec genes, and that true orthologs can generally be identified within each cluster (Angata et al., PNAS, in press). However, humans no longer express CMP-sialic acid hydroxylase (CMAH) the enzyme required to generate one of the potential CD33rSiglec sialic acid ligands called N-glycolylneuraminic acid (Neu5Gc), from its precursor N-acetylneuraminic acid (Neu5Ac). This genetic change occurred after our last common ancestor with the great apes, and dramatically altered the “Sialome” (the sialic acid makeup of a specific species) of humans when compared to that of the great apes. While great ape blood cells express about equal amounts of Neu5Ac and Neu5Gc, human blood cells express almost exclusively Neu5Ac. We also recently discovered that preferential recognition of Neu5Gc is the ancestral condition of most or all of the great ape (chimpanzee and gorilla) CD33rSiglecs (Sonnenburg JL, Altheide TK, Varki A. Glycobiology.14:339–46, 2004). We therefore reasoned that the sudden and major change in the sialome of our hominid ancestors could have had a significant impact on the evolution, binding specificities and expression patterns of CD33rSiglecs. Indeed, we have found that all human CD33rSiglecs can recognize both Neu5Ac and Neu5Gc. This presumably represents an evolutionarily-selected “relaxation” in binding specificity that was necessary to “remask” the Siglecs that had lost their Neu5Gc ligands. Also, there are differences in CD33rSiglec expression on monocytes and neutrophils between humans and great apes (chimp, bonobo, gorilla and orangutan). Furthermore, while great ape cells often show multiple populations with different signal intensities, humans express a single bright peak for each Siglec in flow cytometry. Surprisingly, while humans showed almost no CD33rSiglec expression on lymphocytes, the great apes show a moderate to high expression of some Siglecs on these cells. Total leukocyte expression of some CD33rSiglecs also shows differences between humans and great apes. Overall, CD33rSiglecs appear to be rapidly evolving in primates, with an apparent further acceleration of changes in humans. Additional studies are needed to define the mechanistic details, as well as the implications for human health and disease.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1364-1373 ◽  
Author(s):  
Leonore M.L. Tuyt ◽  
Krista Bregman ◽  
Chantal Lummen ◽  
Wim H.A. Dokter ◽  
Edo Vellenga

Cytokines and growth factors induce activation of the family of signal transducers and activators of transcription (Stats) that directly activate gene expression. Recently, constitutively activated Stat1, Stat3, and Stat5 were identified in nuclear extracts of acute myeloid leukemia (AML) patients, suggesting involvement of constitutive Stat activity in the events of leukemogenesis. In the present study, blasts of nine AML cases were investigated for the constitutive binding activity of the recently identified transcription factor LIL-Stat (LPS- and IL-1-inducible Stat). Band-shift assays were performed using the LPS-and IL-1-responsive element (LILRE) oligonucleotide, a gamma interferon activation site-like site that is present in the human IL-1β promoter. Constitutive LIL-Stat binding activity was observed in three leukemic cell lines and in seven out of nine AML cases. Transient transfection studies with a reporter plasmid containing three sequential LIL-Stat binding sites showed distinct transcriptional activity of LIL-Stat only in those AML blasts that constitutively expressed LIL-Stat. In CD34+ cells LIL-Stat also constitutively bound to its consensus sequence. However, when these cells were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and stem cell factor (SCF) for differentiation along the monocytic lineage, the LIL-Stat binding activity disappeared totally. In agreement with these findings neither mature monocytes nor granulocytes showed constitutive or inducible LIL-Stat binding activity. We conclude that the LIL-Stat transcription factor is constitutively activated in undifferentiated and leukemic hematopoietic cells, but not in mature cells. This may suggest a role for this transcription factor in the process of differentiation. © 1998 by The American Society of Hematology.


2011 ◽  
Vol 30 (4-5) ◽  
pp. 1202-1206 ◽  
Author(s):  
Chenghua Li ◽  
Shuxian Yu ◽  
Jianmin Zhao ◽  
Xiurong Su ◽  
Taiwu Li

Sign in / Sign up

Export Citation Format

Share Document