Modulation of Integrin Function in Hematopoietic Progenitor Cells by CD43 Engagement: Possible Involvement of Protein Tyrosine Kinase and Phospholipase C-γ

Blood ◽  
1999 ◽  
Vol 93 (10) ◽  
pp. 3317-3326 ◽  
Author(s):  
Naoyuki Anzai ◽  
Akihiko Gotoh ◽  
Hirohiko Shibayama ◽  
Hal E. Broxmeyer

Attachment of cells to extracellular matrix components is critical for the regulation of hematopoiesis. CD43 is a mucin-like transmembrane sialoglycoprotein expressed on the surface of almost all hematopoietic cells. A highly extended structure of extracellular mucin with negative charge may function as a repulsive barrier to hematopoietic cells. However, some investigators have shown that CD43 has proadhesive properties, and engagement of CD43 has been reported to upregulate integrin-mediated cell adhesion in T cells. We found that cross-linking of CD43 with monoclonal antibodies (MoAbs) enhanced integrin 4β1 (very late antigen [VLA]-4) and 5 β1 (VLA-5)-dependent adhesion of human cord blood CD34+ cells to fibronectin. CD34+ CD38hi, but not CD34+CD38−/low cells responded significantly to the stimulus, suggesting that committed, but not stem and more immature progenitors are sensitive to CD43-mediated activation of integrin. To elucidate the molecular mechanism leading to integrin activation, we used the growth factor-dependent cell line MO7e. Cross-linking of CD43 induced tyrosine phosphorylation of several intracellular molecules including the protein tyrosine kinase Syk, the proto-oncogene product Cbl, and phospholipase C (PLC)-γ2 in MO7e cells. Moreover, protein tyrosine kinase inhibitor herbimycin A and PLC inhibitor U73122 both blocked CD43-induced enhancement of adhesion to fibronectin. These results indicate that signals mediated through CD43 may increase integrin affinity to fibronectin via a pathway dependent on protein tyrosine kinase and PLC-γ activation in hematopoietic progenitors.

1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


1997 ◽  
Vol 272 (3) ◽  
pp. H1302-H1308 ◽  
Author(s):  
E. Crockett-Torabi ◽  
J. C. Fantone

Neutrophils play an important role in myocardial ischemia-reperfusion injury. Neutrophil adhesion to the vascular endothelium is one of the important early mechanisms that lead to reperfusion injury. The leukocyte adhesion molecule, L-selectin, plays a major role in the initial interaction between neutrophils and endothelial cells. Intervention aimed at blocking selectins or their associated ligands can exert cardioprotective effects. The purpose of this study was to examine the role of L-selectin in the initiation of transmembrane signaling and regulation of canine neutrophil responses. Cross-linking of canine neutrophil L-selectin using anti-L-selectin antibody induced a rapid and transient increase in intracellular Ca2+ levels and superoxide anion generation that were dependent on the extent of L-selectin cross-linking. The responses were significantly inhibited by the protein tyrosine kinase inhibitor, genistein. The results demonstrate that ligation of canine neutrophil L-selectin is coupled to intracellular signal transduction pathways and the generation of second messengers, which may independently play important regulatory roles in modulating neutrophil-endothelial cell interactions.


1996 ◽  
Vol 109 (3) ◽  
pp. 699-704 ◽  
Author(s):  
M. Cervello ◽  
V. Matranga ◽  
P. Durbec ◽  
G. Rougon ◽  
S. Gomez

The glycosyl-phosphatidylinositol (GPI)-anchored F3 molecule, a member of the Ig superfamily made up of Ig and FNIII-like domains, is involved in cell-cell adhesion, neuronal pathfinding and fasciculation. Little is known about the mechanism(s) that governs the F3-mediated cell-cell recognition. In particular, it is not known whether F3 transduces signals across the membrane. Here we show that in F3-transfected CHO cells (1A cells) an increase in tyrosine phosphorylation occurs during F3-mediated aggregation. Moreover, under aggregation conditions F3 immunoprecipitated from 32P-metabolically labeled 1A cells associated with three major phosphorylated proteins. Interestingly, genistein inhibited the F3-mediated aggregation. Increased tyrosine phosphorylation was also observed using antibody-mediated F3-cross-linking. Furthermore, F3 expressed both in 1A cells and in post-natal mouse cerebellum forms non-covalent soluble complexes with protein tyrosine kinase(s). In cerebellum the F3-associated kinase was identified as fyn. By contrast, a truncated F3 protein, expressed in CHO cells, from which all the FN type III repeats have been deleted, does not associate with a kinase. Cross-linking of the F3-truncated form does not induce modulation of tyrosine phosphorylation. Taken together these data demonstrate that F3 is a molecule that transduces signals through both association with protein tyrosine kinase and modulation of protein tyrosine phosphorylation. The presence of FN type III domains is essential for the activation of the intracellular signaling pathway.


2018 ◽  
Vol 185 ◽  
pp. 115-123 ◽  
Author(s):  
Maysa Mohamed Kamel Sobhy ◽  
Soheir Sayed Mahmoud ◽  
Shaimaa Helmy El-Sayed ◽  
Enas Mohamed Ali Rizk ◽  
Amira Raafat ◽  
...  

1996 ◽  
Vol 184 (1) ◽  
pp. 71-79 ◽  
Author(s):  
J Zhang ◽  
E H Berenstein ◽  
R L Evans ◽  
R P Siraganian

Aggregation of the high affinity receptor for immunoglobulin E (Fc epsilon RI) on mast cells results in rapid tyrosine phosphorylation and activation of Syk, a cytoplasmic protein tyrosine kinase. To examine the role of Syk in the Fc epsilon RI signaling pathway, we identified a variant of RBL-2H3 cells that has no detectable Syk by immunoblotting and by in vitro kinase reactions. In these Syk-deficient TB1A2 cells, aggregation of Fc epsilon RI induced no histamine release and no detectable increase in total cellular protein tyrosine phosphorylation. However, stimulation of these cells with the calcium ionophore did induce degranulation. Fc epsilon RI aggregation induced tyrosine phosphorylation of the beta and gamma subunits of the receptor, but no increase in the tyrosine phosphorylation of phospholipase C-gamma 1 and phospholipase C-gamma 2 and no detectable increase in intracellular free Ca2+ concentration. By transfection, cloned lines were established with stable expression of Syk. In these reconstituted cells, Fc epsilon RI aggregation induced tyrosine phosphorylation of phospholipase C-gamma 1 and phospholipase C-gamma 2, an increase in intracellular free Ca2+ and histamine release. These results demonstrate that Syk plays a critical role in the early Fc epsilon RI-mediated signaling events. It further demonstrates that Syk activation occurs downstream of receptor phosphorylation, but upstream of most of the Fc epsilon RI-mediated protein tyrosine phosphorylations.


1992 ◽  
Vol 55 (5) ◽  
pp. 696-698 ◽  
Author(s):  
Hiranthi Jayasuriya ◽  
Nuphavan M. Koonchanok ◽  
Robert L. Geahlen ◽  
Jerry L. McLaughlin ◽  
Ching-Jer Chang

Sign in / Sign up

Export Citation Format

Share Document