Improvement of erythropoiesis in β-thalassemic mice by continuous erythropoietin delivery from muscle

Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2793-2798 ◽  
Author(s):  
Delphine Bohl ◽  
Assumpció Bosch ◽  
Ana Cardona ◽  
Anna Salvetti ◽  
Jean Michel Heard

β-Thalassemias are highly prevalent genetic disorders that can cause severe hemolytic anemia. The main pathophysiologic feature of β-thalassemia is the accumulation of unpaired -globin chains in erythrocyte precursors and red blood cells (RBCs). This accumulation alters cell membrane function and results in early cell destruction and ineffective erythropoiesis. Correction of globin chain imbalance through the induction of fetal hemoglobin (HbF) synthesis is a tentative therapeutic approach for this class of diseases. In short-term in vitro or in vivo assays, recombinant human erythropoietin increases the frequency of erythroid precursors programmed to HbF in humans and to β-minor globin in mice. In contrast, long-term treatment of β-thalassemic patients did not induce HbF significantly. We took advantage of highly efficient adeno-associated virus–mediated (AAV-mediated) gene transfer into mouse muscle to induce a robust and sustained secretion of mouse erythropoietin in β-thalassemic mice, which represent a suitable model for human β-thalassemia intermedia. A 1-year follow-up of 12 treated animals showed a stable correction of anemia associated with improved RBC morphology, increased β-minor globin synthesis, and decreased amounts of -globin chains bound to erythrocyte membranes. More effective erythropoiesis probably accounted for a reduction of erythroid cell proliferation, as shown by decreased proportions of circulating reticulocytes and by reduced iron 59 (59Fe) incorporation into erythroid tissues. This study indicates that the continuous delivery of high amounts of autologous erythropoietin induced a sustained stimulation of β-minor globin synthesis and a stable improvement of erythropoiesis in the β-thalassemic mouse model.

1973 ◽  
Vol 30 (01) ◽  
pp. 138-147 ◽  
Author(s):  
Christopher R. Muirhead

SummaryThe filter loop technique which measures platelet aggregation in vivo in the flowing-blood of the rat was compared to the optical density technique of Born which is carried out in vitro with platelet rich plasma. Using these two experimental models the effect on platelet aggregation of three known inhibitors sulfinpyrazone, dipyridamole and prostaglandin E1, and a novel compound 5-oxo-l-cyclopentene-l-heptanoic acid (AY-16, 804) was determined.The effects on platelet aggregation of the known inhibitors were consistent with information in the literature. Prostaglandin E1 was the most potent inhibitor in both techniques; sulfinpyrazone inhibited aggregation in both models but was less potent than prostaglandin E1. AY-16, 804 exhibited activity in vitro and in vivo similar to that of sulfinpyrazone. Dipyridamole did not inhibit platelet aggregation in vivo and did not inhibit aggregation in vitro in concentrations at which it remained soluble.The filter loop technique is a suitable model for measuring platelet aggregation in the flowing blood of the rat. It is a relatively simple method of determining aggregation and easily adapted to other species.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S7-S8
Author(s):  
Safina Gadeock ◽  
Cambrian Liu ◽  
Brent Polk

Abstract Tumor necrosis factor (TNF) is a highly expressed cytokine in inflammatory bowel disease (IBD). Although TNF can induce colonic epithelial dysfunction and apoptosis, recent studies suggest that TNF signalling promotes epithelial wound repair and stem cell function. Here we investigated the role of TNF receptor 1 (TNFR1) in mediating TNF’s effects on colonic epithelial stem cells, integral to mucosal healing in colitis. We demonstrate that Tnfr1-/- mice exhibit loss in Lgr5 expression (-52%, p<0.02; N=6) compared to wildtype (WT) controls. However, the opposite result was found in vitro, wherein murine Tnfr1-/- colonoids demonstrated a significant increase in Lgr5 expression (66%, p<0.007; N=6) compared to WT colonoids. Similarly, human colonoids treated with an anti-TNFR1 antibody also demonstrated an increase in Lgr5 expression, relative to IgG controls. To resolve the contradiction in the in vivo versus in vitro environment, we hypothesized that mesenchymal TNFR1 expression regulates the epithelial stem cell niche. To determine the relationships between these cell types, we co-cultured WT or Tnfr1-/- colonoids with WT or Tnfr1-/- colonic myofibroblasts (CMFs). We found that epithelial Lgr5 expression was significantly higher (by 52%, p<0.05; N=3) when co-cultured with WT compared to TNFR1-/- myofibroblasts. The loss of TNFR1 expression in vivo increases the number of αSMA+ mesenchymal cells by nearly 56% (N=6) but considerably reduces the pericryptal PDGFRα+ cells, suggesting modifications in mesenchymal populations that contribute to the epithelial stem cell niche. Functionally, primary Tnfr1-/--CMFs displayed PI3k (p<0.001; N=3) and MAPK (p<0.01; N=3)-dependent increases in migration, proliferation, and differentiation, but RNA profiling demonstrated by diminished levels of stem cell niche factors, Rspo3 (-80%, p<0.0001; N=6) and Wnt2b (-63%, p<0.008; N=6) compared to WT-CMFs. Supplementation with 50ng recombinant Rspo3 for 5 d to Lgr5-GFP organoids co-cultured with TNFR1-/--CMFs restored Lgr5 expression to wildtype levels. Therefore, TNFR1-mediated TNF signalling in mesenchymal cells promotes their ability to support an epithelial stem cell niche. These results should motivate future studies of the stem cell niche in the context of long-term treatment with anti-TNF therapies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 421-429 ◽  
Author(s):  
Marco Gabbianelli ◽  
Ornella Morsilli ◽  
Adriana Massa ◽  
Luca Pasquini ◽  
Paolo Cianciulli ◽  
...  

In human β-thalassemia, the imbalance between α- and non–α-globin chains causes ineffective erythropoiesis, hemolysis, and anemia: this condition is effectively treated by an enhanced level of fetal hemoglobin (HbF). In spite of extensive studies on pharmacologic induction of HbF synthesis, clinical trials based on HbF reactivation in β-thalassemia produced inconsistent results. Here, we investigated the in vitro response of β-thalassemic erythroid progenitors to kit ligand (KL) in terms of HbF reactivation, stimulation of effective erythropoiesis, and inhibition of apoptosis. In unilineage erythroid cultures of 20 patients with intermedia or major β-thalassemia, addition of KL, alone or combined with dexamethasone (Dex), remarkably stimulated cell proliferation (3-4 logs more than control cultures), while decreasing the percentage of apoptotic and dyserythropoietic cells (<5%). More important, in both thalassemic groups, addition of KL or KL plus Dex induced a marked increase of γ-globin synthesis, thus reaching HbF levels 3-fold higher than in con-trol cultures (eg, from 27% to 75% or 81%, respectively, in β-thalassemia major). These studies indicate that in β-thalassemia, KL, alone or combined with Dex, induces an expansion of effective erythropoiesis and the reactivation of γ-globin genes up to fetal levels and may hence be considered as a potential therapeutic agent for this disease.


Blood ◽  
1978 ◽  
Vol 51 (4) ◽  
pp. 653-658 ◽  
Author(s):  
RS Franco ◽  
JW Hogg ◽  
OJ Martelo

Abstract To define further the role of hemin-controlled repressor (HCR) in globin synthesis, we studied its effect on the synthesis of individual globin chains in a rabbit reticulocyte lysate cell-free system. In the presence of HCR there was a marked globin chain imbalance, resulting in a lowered alpha/beta ratio. These findings in vitro may have relevance to certain clinical heme deficiency states in which a similar globin chain imbalance has been observed.


2018 ◽  
Vol 8 (4) ◽  
pp. 38 ◽  
Author(s):  
Kenji Lim ◽  
Chantal Yoon ◽  
Toshifumi Yokota

Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disease prevalent in 1 in 3500 to 5000 males worldwide. As a result of mutations that interrupt the reading frame of the dystrophin gene (DMD), DMD is characterized by a loss of dystrophin protein that leads to decreased muscle membrane integrity, which increases susceptibility to degeneration. CRISPR/Cas9 technology has garnered interest as an avenue for DMD therapy due to its potential for permanent exon skipping, which can restore the disrupted DMD reading frame in DMD and lead to dystrophin restoration. An RNA-guided DNA endonuclease system, CRISPR/Cas9 allows for the targeted editing of specific sequences in the genome. The efficacy and safety of CRISPR/Cas9 as a therapy for DMD has been evaluated by numerous studies in vitro and in vivo, with varying rates of success. Despite the potential of CRISPR/Cas9-mediated gene editing for the long-term treatment of DMD, its translation into the clinic is currently challenged by issues such as off-targeting, immune response activation, and sub-optimal in vivo delivery. Its nature as being mostly a personalized form of therapy also limits applicability to DMD patients, who exhibit a wide spectrum of mutations. This review summarizes the various CRISPR/Cas9 strategies that have been tested in vitro and in vivo for the treatment of DMD. Perspectives on the approach will be provided, and the challenges faced by CRISPR/Cas9 in its road to the clinic will be briefly discussed.


Blood ◽  
1975 ◽  
Vol 45 (3) ◽  
pp. 427-433 ◽  
Author(s):  
DH Chui ◽  
BV Loyer

Abstract Adult SI/SI-d mutant mice have severe macrocytic, normochromic anemia. Moreover these animals are unresponsive to the stimulation of erythropoietin in vivo. By means of a bone marrow cell suspension culture system, the present investigation shows that in adult SI/SI-d marrow, there are cells capable of responding in vitro to erythropoietin in a normal fashion. Moreover, the erythropoietin present in SI/SI-d serum is biologically active in vitro without any prior biochemical modification. These observations support the suggestion that there is a defect in differentiation in the erythroid cell lines of SI/SI-d mice in vivo due to an abnormal hemopoietic microenvironment.


2020 ◽  
Vol 7 ◽  
Author(s):  
Ieva Palubeckaitė ◽  
Sanne Venneker ◽  
Inge H. Briaire-de Bruijn ◽  
Brendy E. van den Akker ◽  
Augustinus D. Krol ◽  
...  

Purpose: Chondrosarcomas are a group of cartilaginous malignant neoplasms characterized by the deposition of chondrogenic extracellular matrix. Surgical resection is currently the only curative treatment option, due to their high resistance to conventional chemotherapy and radiotherapy. Novel therapeutic treatment options may improve outcome. Predominantly used cell line monolayer in vitro models lack in vivo complexity, such as the presence of extracellular matrix, and differing oxygen access. Hence, we aimed to improve pre-clinical chondrosarcoma research by developing an alginate-based 3D cell culture model.Method: An alginate scaffold was applied to generate spheroids of three chondrosarcoma cell lines (CH2879, JJ012, SW1353). Morphological, histological and immunohistochemical assessment of the spheroids were used to characterize the chondrosarcoma model. Presto blue assay, morphological and immunohistochemical assessment were applied to assess spheroid response to a panel of chemotherapeutics and targeted therapies, which was compared to conventional 2D monolayer models. Synergistic effect of doxorubicin and ABT-737 (Bcl-2 inhibitor) was compared between monolayer and spheroid models using excess over Bliss. A 3D colony formation assay was developed for assessment of radiotherapy response.Results: Chondrosarcoma spheroids produced chondrogenic matrix and remained proliferative after 2 weeks of culture. When treated with chemotherapeutics, the spheroids were more resistant than their monolayer counterparts, in line with animal models and clinical data. Moreover, for sapanisertib (mTOR inhibitor) treatment, a recovery in chondrosarcoma growth, previously observed in mice models, was also observed using long-term treatment. Morphological assessment was useful in the case of YM-155 (survivin inhibitor) treatment where a fraction of the spheroids underwent cell death, however a large fraction remained proliferative and unaffected. Synergy was less pronounced in 3D compared to 2D. A 3D clonogenic assay confirmed increased resistance to radiotherapy in 3D chondrosarcoma spheroids.Conclusion: We demonstrate that the chondrosarcoma alginate spheroid model is more representative of chondrosarcoma in vivo and should be used instead of the monolayer model for therapy testing. Improved selection at in vitro stage of therapeutic testing will increase the amount of information available for experimental design of in vivo animal testing and later, clinical stages. This can potentially lead to increased likelihood of approval and success at clinical trials.


1986 ◽  
Vol 9 (5) ◽  
pp. 301-304 ◽  
Author(s):  
S. Stefoni ◽  
A. Nanni Costa ◽  
G. Liviano D'Arcangelo ◽  
M. Biavati ◽  
S. lannelli ◽  
...  

Biocompatibility of charcoal hemoperfusion was studied in a group of 15 uremic patients, evaluating the effects of long-term treatment on some structural and functional parameters of circulating lymphocytes: in vivo distribution of T-cell subsets; surface T3, T4 and T8 antigen expression, in vivo and in vitro DNA synthesis. A comparative analysis was performed with patients on conventional dialysis using cuprophan membranes.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3701-3701 ◽  
Author(s):  
Kun Xu ◽  
Keith V. Holubec ◽  
John E. Love ◽  
Thomas J. Goodwin ◽  
Arthur J. Sytkowski

Abstract Humans and experimental animals subjected to microgravity, such as experienced during space flight, exhibit alterations in erythropoiesis, including changes in red blood cell morphology, survival and a reduction in red blood cell mass. Some of these alterations have been attributed to a disruption of normal in vivo erythropoietin physiology. However, human bone marrow cells grown on orbit showed a profound reduction in the number of erythroid cells, suggesting a cellular component. We now report the results of a study carried out on orbit on the International Space Station (ISS UF-1) in which an erythroid cell line was induced to differentiate. Rauscher murine erythroleukemia cells, a continuous cell line that can undergo erythropoietin (Epo)- or chemical-induced differentiation similar to normal erythropoiesis, were cultured for 6 days either in microgravity on board the ISS or on earth and then for 3 days in the absence or presence of 50 U Epo/ml or 0.7% dimethyl sulfoxide (DMSO). The cells were fixed, stored on orbit and returned to earth for study. Compared to ground-based controls, cells cultured in microgravity exhibited a greater degree of differentiation (hemoglobinization) (p<0.01). However, TER-119 antigen, a specific marker of the late stages of murine erythroid differentiation, was not detected on the surface of cells grown in microgravity. A significantly higher percentage (p<0.05) of cell clusters formed on orbit, whereas actin content appeared reduced. Furthermore, there was a more profound loss of actin stress fibers in microgravity following Epo or DMSO treatment. These results demonstrate abnormal erythropoiesis in vitro in microgravity and are consistent with the hypothesis that erythropoiesis is affected by gravitational forces at the cellular level.(Supported by NASA Grants NAG9-1368 and NAG2-1592 to AJS)


Sign in / Sign up

Export Citation Format

Share Document