Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis

Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4142-4151 ◽  
Author(s):  
Marcin Majka ◽  
Anna Janowska-Wieczorek ◽  
Janina Ratajczak ◽  
M. Anna Kowalska ◽  
Gaston Vilaire ◽  
...  

Abstract The role of the chemokine binding stromal-derived factor 1 (SDF-1) in normal human megakaryopoiesis at the cellular and molecular levels and its comparison with that of thrombopoietin (TPO) have not been determined. In this study it was found that SDF-1, unlike TPO, does not stimulate αIIbβ3+ cell proliferation or differentiation or have an antiapoptotic effect. However, it does induce chemotaxis, trans-Matrigel migration, and secretion of matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) by these cells, and both SDF-1 and TPO increase the adhesion of αIIbβ3+ cells to fibrinogen and vitronectin. Investigating the intracellular signaling pathways induced by SDF-1 and TPO revealed some overlapping patterns of protein phosphorylation/activation (mitogen-activated protein kinase [MAPK] p42/44, MAPK p38, and AKT [protein kinase B]) and some that were distinct for TPO (eg, JAK-STAT) and for SDF-1 (eg, NF-κB). It was also found that though inhibition of phosphatidyl-inositol 3-kinase (PI-3K) by LY294002 in αIIbβ3+ cells induced apoptosis and inhibited chemotaxis adhesion and the secretion of MMP-9 and VEGF, the inhibition of MAPK p42/44 (by the MEK inhibitor U0126) had no effect on the survival, proliferation, and migration of these cells. Hence, it is suggested that the proliferative effect of TPO is more related to activation of the JAK-STAT pathway (unique to TPO), and the PI-3K–AKT axis is differentially involved in TPO- and SDF-1–dependent signaling. Accordingly, PI-3K is involved in TPO-mediated inhibition of apoptosis, TPO- and SDF-1–regulated adhesion to fibrinogen and vitronectin, and SDF-1–mediated migration. This study expands the understanding of the role of SDF-1 and TPO in normal human megakaryopoiesis and indicates the molecular basis of the observed differences in cellular responses.

Blood ◽  
2000 ◽  
Vol 96 (13) ◽  
pp. 4142-4151 ◽  
Author(s):  
Marcin Majka ◽  
Anna Janowska-Wieczorek ◽  
Janina Ratajczak ◽  
M. Anna Kowalska ◽  
Gaston Vilaire ◽  
...  

The role of the chemokine binding stromal-derived factor 1 (SDF-1) in normal human megakaryopoiesis at the cellular and molecular levels and its comparison with that of thrombopoietin (TPO) have not been determined. In this study it was found that SDF-1, unlike TPO, does not stimulate αIIbβ3+ cell proliferation or differentiation or have an antiapoptotic effect. However, it does induce chemotaxis, trans-Matrigel migration, and secretion of matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) by these cells, and both SDF-1 and TPO increase the adhesion of αIIbβ3+ cells to fibrinogen and vitronectin. Investigating the intracellular signaling pathways induced by SDF-1 and TPO revealed some overlapping patterns of protein phosphorylation/activation (mitogen-activated protein kinase [MAPK] p42/44, MAPK p38, and AKT [protein kinase B]) and some that were distinct for TPO (eg, JAK-STAT) and for SDF-1 (eg, NF-κB). It was also found that though inhibition of phosphatidyl-inositol 3-kinase (PI-3K) by LY294002 in αIIbβ3+ cells induced apoptosis and inhibited chemotaxis adhesion and the secretion of MMP-9 and VEGF, the inhibition of MAPK p42/44 (by the MEK inhibitor U0126) had no effect on the survival, proliferation, and migration of these cells. Hence, it is suggested that the proliferative effect of TPO is more related to activation of the JAK-STAT pathway (unique to TPO), and the PI-3K–AKT axis is differentially involved in TPO- and SDF-1–dependent signaling. Accordingly, PI-3K is involved in TPO-mediated inhibition of apoptosis, TPO- and SDF-1–regulated adhesion to fibrinogen and vitronectin, and SDF-1–mediated migration. This study expands the understanding of the role of SDF-1 and TPO in normal human megakaryopoiesis and indicates the molecular basis of the observed differences in cellular responses.


2008 ◽  
Vol 412 (2) ◽  
pp. e15-e16 ◽  
Author(s):  
Vilmante Borutaite

The question of how Bax is activated during apoptosis to perform its role in permeabilization of mitochondrial membranes is intriguing for investigators in the wide field of cell death research. In their paper published in the Biochemical Journal in 2006, Capano and Crompton presented their discovery that simulated ischaemia causes rapid activation of AMPK (AMP-activated protein kinase) which phosphorylates and activates p38 MAPK (mitogen-activated protein kinase) leading to Bax activation and translocation to mitochondria in isolated cardiac myocytes. This was the first report on the molecular mechanism of Bax activation and migration during ischaemia-induced apoptosis in cardiomyocytes.


Sign in / Sign up

Export Citation Format

Share Document