Ionizing radiation sensitizes erythroleukemic cells but not normal erythroblasts to tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)–mediated cytotoxicity by selective up-regulation of TRAIL-R1

Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2596-2603 ◽  
Author(s):  
Roberta Di Pietro ◽  
Paola Secchiero ◽  
Rosalba Rana ◽  
Davide Gibellini ◽  
Giuseppe Visani ◽  
...  

Abstract Cytotoxic activity of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL/Apo-2 ligand), used alone or in different combinations with either a low (1.5 Gy) or a high (15 Gy) single dose of ionizing radiation (IR), was investigated on erythroleukemic cells (K562, HEL, Friend, primary leukemic erythroblasts) and on primary CD34+-derived normal erythroblasts. Human recombinant TRAIL alone variably affected the survival/growth of erythroleukemic cells; K562 cells were the most sensitive. Moreover, all erythroleukemic cells were radio-resistant, as demonstrated by the fact that cytotoxicity was evident only after treatment with high-dose (15 Gy) IR. Remarkably, when IR and TRAIL were used in combination, an additive effect was noticed in all erythroleukemic cells. Augmentation of TRAIL-induced cell death by IR was observed with both low and high IR doses and required the sequential treatment of IR 3 to 6 hours before the addition of TRAIL. Conversely, both TRAIL and IR showed a moderate cytotoxicity on primary CD34+-derived normal erythroblasts when used alone, but their combination did not show any additive effect. Moreover, the cytotoxicity of IR plus TRAIL observed in erythroleukemic cells was accompanied by the selective up-regulation of the surface expression of TRAIL-R1 (DR4), and it was completely blocked by the z-Val-Ala-Asp (OMe)-CH2 (z-VAD-fmk) caspase inhibitor. On the other hand, the surface expression of TRAIL-R1 in CD34+-derived normal erythroblasts was unaffected by IR, which induced the up-regulation of the decoy TRAIL-R3. These data demonstrate that treatment with IR provides an approach to selectively sensitize erythroleukemic cells, but not normal erythroblasts, to TRAIL-induced apoptosis through the functional up-regulation of TRAIL-R1.

Blood ◽  
1995 ◽  
Vol 86 (11) ◽  
pp. 4184-4193 ◽  
Author(s):  
G Eissner ◽  
F Kohlhuber ◽  
M Grell ◽  
M Ueffing ◽  
P Scheurich ◽  
...  

In this report, we show that ionizing radiation (IR) at a clinically relevant dose (4 Gy) causes apoptosis in macrovascular and microvascular human endothelial cells. Treatment of irradiated cells with a low dose of bacterial endotoxin (LPS), similar to the levels observed in serum during endotoxemia, enhanced the rate of apoptosis, although LPS alone was unable to induce programmed cell death. The cytokine and endotoxin antagonist interleukin-10 (IL-10) reduced the rate of LPS + IR-induced apoptosis to levels obtained with irradiation alone. Using neutralizing antibodies against tumor necrosis factor- alpha (TNF), we could show crucial involvement of TNF in the LPS- mediated enhancement of IR-induced apoptosis, but not in the IR-induced apoptosis per se. However, further analysis strongly suggested the transmembrane form of TNF (mTNF), but not soluble TNF, to be accountable for the LPS-mediated cytotoxic effects. Studies with anatagonistic receptor specific antibodies clearly showed that TNF receptor type I (TR60) is essential and sufficient to elicit this effect. These findings are of potential clinical importance because they may disclose a relevant mechanism that leads to endothelial damage after radiotherapy or total body irradiation used for conditioning in bone marrow transplantation and that may thus contribute to transplant related complications, especially in association with endotoxemia or related inflammatory states.


2003 ◽  
Vol 23 (18) ◽  
pp. 6609-6617 ◽  
Author(s):  
Robert Endres ◽  
Georg Häcker ◽  
Inge Brosch ◽  
Klaus Pfeffer

ABSTRACT The silencer of death domains (SODD) has been proposed to prevent constitutive signaling of tumor necrosis factor receptor 1 (TNFR1) in the absence of ligand. Besides TNFR1, death receptor 3 (DR3), Hsp70/Hsc70, and Bcl-2 have been characterized as binding partners of SODD. In order to investigate the in vivo role of SODD, we generated mice congenitally deficient in expression of the sodd gene. No spontaneous inflammatory infiltrations were observed in any organ of these mice. Consistent with this finding, in the absence of SODD no alteration in the activation patterns of nuclear factor κB (NF-κB), stress kinases, or ERK1 or -2 was observed after stimulation with tumor necrosis factor (TNF). Activation of NF-κB by DR3 was also unchanged. The extents of DR3- and TNF-induced apoptosis were comparable in gene-deficient and wild-type cells. Protection of cells against heat shock as mediated by the Hsp70 system and against staurosporine-induced apoptosis was independent of SODD. Furthermore, resistance to high-dose lipopolysaccharide (LPS) injections, LPS-d-GalN injections, and infection with listeriae was similar in wild-type and gene-deficient mice. In conclusion, our data do not support the concept of a unique, nonredundant role of SODD for the functions of TNFR1, Hsp70, and DR3.


1997 ◽  
Vol 185 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Andrew D. Badley ◽  
David Dockrell ◽  
Margaret Simpson ◽  
Ron Schut ◽  
David H. Lynch ◽  
...  

Apoptosis of bystander uninfected CD4+ T lymphocytes by neighboring HIV-infected cells is observed in cell culture and in lymphoid tissue of HIV-infected individuals. This study addresses whether antigen-presenting cells such as human macrophages mediate apoptosis of CD4+ T cells from HIV-infected individuals. Uninfected human macrophages, and to a larger degree, HIV-infected macrophages mediate apoptosis of T cells from HIV-infected, but not from uninfected control individuals. This macrophage-dependent killing targets CD4+, but not CD8+ T lymphocytes from HIV-infected individuals, and direct contact between macrophages and lymphocytes is required. Additional analyses indicated that the apoptosis-inducing ligands, FasL and tumor necrosis factor (TNF), mediate this macrophage-induced apoptosis of CD4+ T cells. These results support a role for macrophage-associated FasL and TNF in the selective depletion of CD4+ T cells in HIV-infected individuals.


2004 ◽  
Vol 15 (7) ◽  
pp. 3266-3284 ◽  
Author(s):  
Romaine Ingrid Fernando ◽  
Jay Wimalasena

Estrogens such as 17-β estradiol (E2) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E2 abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-α, H2O2, and serum starvation in causing apoptosis. Furthermore, the ability of E2 to prevent tumor necrosis factor-α-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90RSK1 and Akt, was not phosphorylated in response to E2 in vitro. E2 treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90RSK1 to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90RSK1 activation, E2 also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E2. Dominant negative Ras blocked E2-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E2-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E2-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E2 prevents apoptosis.


Sign in / Sign up

Export Citation Format

Share Document