VEGF-C/VEGFR-3 signaling in macrophages ameliorates acute lung injury

2021 ◽  
pp. 2100880
Author(s):  
Masahiro Yamashita ◽  
Miyuki Niisato ◽  
Yasushi Kawasaki ◽  
Sinem Karaman ◽  
Marius R. Robciuc ◽  
...  

RationaleSuccessful recovery from acute lung injury requires inhibition of neutrophil influx and clearance of apoptotic neutrophils. However, the mechanisms underlying recovery remain unclear.ObjectivesWe investigated the ameliorative effects of vascular endothelial growth factor receptor-3 (VEGFR-3)/VEGF-C signaling in macrophages in lipopolysaccharide-induced lung injury.MethodsLipopolysaccharides were intranasally injected into wild-type and transgenic mice. Gain- and loss- of VEGF-C/VEGFR-3 signaling function experiments employed adenovirus-mediated intranasal delivery of VEGF-C (Ad-VEGF-C vector) and soluble VEGFR-3, or, anti-VEGFR-3 blocking antibodies and mice with a deletion of VEGFR-3 in myeloid cells.Measurements and Main ResultsThe early phase of lung injury was significantly alleviated by the overexpression of VEGF-C with increased levels of bronchoalveolar lavage fluid (BALF) interleukin (IL)-10, but worsened in the later phase by VEGFR-3 inhibition upon administration of Ad-sVEGFR-3 vector. Injection of anti-VEGFR-3 antibodies to the mice in the resolution phase inhibited recovery from lung injury. The VEGFR-3 deleted mice had a shorter survival time than littermates and more severe lung injury in the resolution phase. Alveolar macrophages in the resolution phase digested most of extrinsic apoptotic neutrophils, and VEGF-C/VEGFR-3 signaling increased efferocytosis via upregulation of integrin alpha v in the macrophages. We also found that incubation with BALF from acute respiratory distress syndrome (ARDS) patients, but not from controls, decreases VEGFR-3 expression and the efficiency of IL-10 expression and efferocytosis in human monocyte-derived macrophages.ConclusionsVEGFR-3/VEGF-C signaling in macrophages ameliorates experimental lung injury. This mechanism may provide an explanation also for ARDS resolution.

2020 ◽  
Author(s):  
Mei-Mei Liu ◽  
Jin Zhou ◽  
Dan Ji ◽  
Jun Yang ◽  
Yan-Ping Huang ◽  
...  

Abstract Background: The present study investigated the attenuating effect of diammonium glycyrrhizinate lipid ligand (DGLL) on acute lung injury (ALI) and pulmonary edema induced by lipopolysaccharide (LPS) in rats.Methods: Rat ALI model was established by LPS (10 mg/kg) intraperitoneal injection, and DGLL (30, 60, 120 mg/kg) was administrated orall 1 hour before LPS infusion. Six hours after LPS stimulation, lung injury was evaluated by histological staining. Pulmonary edema was evaluated by lung wet-dry weight ratio, the protein concentration of bronchoalveolar lavage fluid (BALF), and the evans blue (EB) extravasation in lung tissues. The expression of cytokines and adhesion molecules in lung tissues were detected by ELISA method. The myeloperoxidase (MPO) expression was detected by immunohistochemical staining. Western blot was used to detect the expression changes of the proteins associated with pulmonary inflammation and microvascular permeability.Results: DGLL significantly inhibited LPS induced ALI, manifested as attenuation of MPO positive cells and TNF-α, IL-6, ICAM-1 expression in rat lung tissue. In addition, DGLL abrogated LPS-induced pulmonary edema, decreased the protein concentration in BALF and EB extravasation. Meanwhile, DGLL inhibited the degradation of vascular endothelial cadherin (VE-Cadherin) and tight junction protein, including ZO-1, Occludin, and JAM-1.Conclusions: DGLL has an inhibitory effect on LPS-induced rat ALI, which is related to the inhibition of inflammatory cell infiltration and microvascular barrier disruption. These results provide a theoretical basis for DGLL in the potential clinical treatment of ALI.


2007 ◽  
Vol 8 (1) ◽  
Author(s):  
Hidefumi Koh ◽  
Sadatomo Tasaka ◽  
Naoki Hasegawa ◽  
Wakako Yamada ◽  
Mie Shimizu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document