scholarly journals LocateP: Genome-scale subcellular-location predictor for bacterial proteins

2008 ◽  
Vol 9 (1) ◽  
pp. 173 ◽  
Author(s):  
Miaomiao Zhou ◽  
Jos Boekhorst ◽  
Christof Francke ◽  
Roland J Siezen
Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 451
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Low complexity regions (LCRs) in proteins are characterized by amino acid frequencies that differ from the average. These regions evolve faster and tend to be less conserved between homologs than globular domains. They are not common in bacteria, as compared to their prevalence in eukaryotes. Studying their conservation could help provide hypotheses about their function. To obtain the appropriate evolutionary focus for this rapidly evolving feature, here we study the conservation of LCRs in bacterial strains and compare their high variability to the closeness of the strains. For this, we selected 20 taxonomically diverse bacterial species and obtained the completely sequenced proteomes of two strains per species. We calculated all orthologous pairs for each of the 20 strain pairs. Per orthologous pair, we computed the conservation of two types of LCRs: compositionally biased regions (CBRs) and homorepeats (polyX). Our results show that, in bacteria, Q-rich CBRs are the most conserved, while A-rich CBRs and polyA are the most variable. LCRs have generally higher conservation when comparing pathogenic strains. However, this result depends on protein subcellular location: LCRs accumulate in extracellular and outer membrane proteins, with conservation increased in the extracellular proteins of pathogens, and decreased for polyX in the outer membrane proteins of pathogens. We conclude that these dependencies support the functional importance of LCRs in host–pathogen interactions.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Zhenglin Zhu ◽  
Zhufen Guan ◽  
Gexin Liu ◽  
Yawang Wang ◽  
Ze Zhang

Abstract Although the domestic silkworm (Bombyx mori) is an important model and economic animal, there is a lack of comprehensive database for this organism. Here, we developed the silkworm genome informatics database (SGID). It aims to bring together all silkworm-related biological data and provide an interactive platform for gene inquiry and analysis. The function annotation in SGID is thorough and covers 98% of the silkworm genes. The annotation details include function description, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, subcellular location, transmembrane topology, protein secondary/tertiary structure, homologous group and transcription factor. SGID provides genome-scale visualization of population genetics test results based on high-depth resequencing data of 158 silkworm samples. It also provides interactive analysis tools of transcriptomic and epigenomic data from 79 NCBI BioProjects. SGID will be extremely useful to silkworm research in the future.


2019 ◽  
Author(s):  
Zhenglin Zhu ◽  
Zhufen Guan ◽  
Gexin Liu ◽  
Yawang Wang ◽  
Ze Zhang

AbstractAlthough the domestic silkworm (Bombyx mori) is an important model and economic animal, there is a lack of comprehensive database for this organism. Here, we developed the silkworm genome informatics database, SGID. It aims to bring together all silkworm related biological data and provide an interactive platform for gene inquiry and analysis. The function annotation in SGID is thorough and covers 98% of the silkworm genes. The annotation details include function description, gene ontology, KEGG, pathway, subcellular location, transmembrane topology, protein secondary/tertiary structure, homologous group and transcription factor. SGID provides genome scale visualization of population genetics test results based on high depth resequencing data of 158 silkworm samples. It also provides interactive analysis tools of transcriptomic and epigenomic data from 79 NCBI BioProjects. SGID is freely available at http://sgid.popgenetics.net. This database will be extremely useful to silkworm research in the future.


2006 ◽  
Vol 1 (7) ◽  
pp. 260-264 ◽  
Author(s):  
Paul D. Taylor ◽  
Teresa K. Attwood ◽  
Darren R. Flower

Sign in / Sign up

Export Citation Format

Share Document